Polyethylene oxide(PEO)-based solid-state electrolytes are considered ideal for electrolyte materials in solid-state lithium metal batteries(SSLMBs).However,practical applications are hindered by the lower conductivit...Polyethylene oxide(PEO)-based solid-state electrolytes are considered ideal for electrolyte materials in solid-state lithium metal batteries(SSLMBs).However,practical applications are hindered by the lower conductivity and poor interfacial stability.Here,we propose a strategy to construct a three-dimensional(3D)fiber network of metal-organic frameworks(MOFs).Composite solid electrolytes(CSEs)with continuous ion transport pathways were fabricated by filling a PEO polymer matrix in fibers containing interconnected MOFs.This 3D fiber network provides a fast Li+transport path and effectively improves the ionic conductivity(1.36×10^(-4) S·cm^(-1),30℃).In addition,the network of interconnected MOFs not only effectively traps the anions,but also provides sufficient mechanical strength to prevent the growth of Li dendrites.Benefiting from the advantages of structural design,the CSEs stabilize the Li/electrolyte interface and extend the cycle life of the Li-symmetric cells to 3000 h.The assembled SSLMBs exhibit excellent cycling performance at both room and high temperatures.In addition,the constructed pouch cells can provide an areal capacity of 0.62 mA·h·cm^(-2),which can still operate under extreme conditions.This work provides a new strategy for the design of CSEs with continuous structure and stable operation of SSLMBs.展开更多
Light-framed timber structure(LTS)buildings have been highly valued in recent years due to their low-carbon characteristics.However,the applicability of the building envelope is closely related to indoor and outdoor c...Light-framed timber structure(LTS)buildings have been highly valued in recent years due to their low-carbon characteristics.However,the applicability of the building envelope is closely related to indoor and outdoor conditions.The hot summer and cold winter(HSCW)climate zone in China has high humidity and great temperature variation throughout the year,resulting in distinct outdoor environments in different seasons.The indoor environment is greatly affected by energy-consumption patterns and window-opening habits,which largely depend upon the regulation operations of occupants.All these interrelated factors lead to extremely complex boundary conditions on each side of the building envelope.Whether the structures of LTS buildings are applicable in this climate zone,therefore,needs to be carefully considered.In this study,two LTS buildings with different envelopes were established in Haining,China,situated in the HSCW climate zone,and selected as the study objects.Different operation modes were adopted to create a variety of indoor environments.Under each condition,the processes of heat and moisture transfer within the building envelopes and the indoor environment were monitored and compared.The comparison indicated that the building envelope with high moisture storage and insulation ability maintained a relatively stable indoor environment,especially when the environment changed abruptly.Conversely,if the outdoor environment was equable(e.g.,relative humidity within the range of 30%–60%)or intermittent energy consumption modes were adopted,the building envelope with a low thermal inertia index and weak moisture-buffering ability performed better because it enabled a faster response of the indoor environment to air conditioning.Moreover,a high risk of moisture accumulation between the thermal insulation layer and other materials with a large water vapour transfer resistance factor was also identified,suggesting a higher requirement for the vapour insulation of the envelopes of LTS buildings.展开更多
The rational and effective combination of multicomponent materials and ingenious microstructure design for efficient electromagnetic wave(EMW)absorption are still challenging.In this paper,MXene was used as the aeroge...The rational and effective combination of multicomponent materials and ingenious microstructure design for efficient electromagnetic wave(EMW)absorption are still challenging.In this paper,MXene was used as the aerogel matrix,modified with sea urchin-like magnetic Co/N-doped carbon@polyaniline(Co-NC@PANI),gelatin was introduced as the reinforcement phase of the aerogel backbone,and a microwave absorber with high efficiency and excellent performance was successfully prepared.The sea urchin-like Co-NC@PANI not only adjusted the impedance matching of the MXene but also introduced a magnetic loss mode into the composite.The multicomponent interfacial polarization,heterostructure,three-dimensional(3D)lightweight porous structure,and electromagnetic synergy strategy enabled the MXene-based aerogel modified by Co-NC@PANI(MCoP)to exhibit surprising EMW absorption properties.The maximum reflection loss(RL_(max))of the aerogel composite reached-62.4 dB,and the effective absorption bandwidth(EAB)reached 6.56 GHz when the loading was only 12%.In addition,through electromagnetic simulation experiments,the change in the electromagnetic field before and after EMW passed through the materials and the distribution of the volume loss density of EMW by the coaxial ring were observed.The coordinated electromagnetic balance strategy in the 3D network provides inspiration for the construction of materials and expands the research direction of lightweight and outstanding microwave absorbers.展开更多
Oligodendrocytes(OLs) are myelinating glial cells that form myelin sheaths around axons to ensure rapid and focal conduction of action potentials. Here, we found that an axonal outgrowth regulatory molecule, AATYK(...Oligodendrocytes(OLs) are myelinating glial cells that form myelin sheaths around axons to ensure rapid and focal conduction of action potentials. Here, we found that an axonal outgrowth regulatory molecule, AATYK(apoptosis-associated tyrosine kinase), was up-regulated with OL differentiation and remyelination. We therefore studied its role in OL differentiation. The results showed that AATYK knockdown inhibited OL differentiation and the expression of myelin genes in vitro. Moreover, AATYKdeficiency maintained the proliferation status of OLs but did not affect their survival. Thus, AATYK is essential for the differentiation of OLs.展开更多
Automated echocardiogram interpretation with artificial intelligence(Al)has the potential to facilitate the serial diagnosis of heart defects by primary clinician.However,the fully automated and interpretable analysis...Automated echocardiogram interpretation with artificial intelligence(Al)has the potential to facilitate the serial diagnosis of heart defects by primary clinician.However,the fully automated and interpretable analysis pipeline for suggesting a treatment plan is largely underexplored.展开更多
基金support from the China Postdoctoral Science Foundation(Nos.2022TQ0173 and 2023M731922).
文摘Polyethylene oxide(PEO)-based solid-state electrolytes are considered ideal for electrolyte materials in solid-state lithium metal batteries(SSLMBs).However,practical applications are hindered by the lower conductivity and poor interfacial stability.Here,we propose a strategy to construct a three-dimensional(3D)fiber network of metal-organic frameworks(MOFs).Composite solid electrolytes(CSEs)with continuous ion transport pathways were fabricated by filling a PEO polymer matrix in fibers containing interconnected MOFs.This 3D fiber network provides a fast Li+transport path and effectively improves the ionic conductivity(1.36×10^(-4) S·cm^(-1),30℃).In addition,the network of interconnected MOFs not only effectively traps the anions,but also provides sufficient mechanical strength to prevent the growth of Li dendrites.Benefiting from the advantages of structural design,the CSEs stabilize the Li/electrolyte interface and extend the cycle life of the Li-symmetric cells to 3000 h.The assembled SSLMBs exhibit excellent cycling performance at both room and high temperatures.In addition,the constructed pouch cells can provide an areal capacity of 0.62 mA·h·cm^(-2),which can still operate under extreme conditions.This work provides a new strategy for the design of CSEs with continuous structure and stable operation of SSLMBs.
基金supported by the National Natural Science Foundation of China(No.51978623).
文摘Light-framed timber structure(LTS)buildings have been highly valued in recent years due to their low-carbon characteristics.However,the applicability of the building envelope is closely related to indoor and outdoor conditions.The hot summer and cold winter(HSCW)climate zone in China has high humidity and great temperature variation throughout the year,resulting in distinct outdoor environments in different seasons.The indoor environment is greatly affected by energy-consumption patterns and window-opening habits,which largely depend upon the regulation operations of occupants.All these interrelated factors lead to extremely complex boundary conditions on each side of the building envelope.Whether the structures of LTS buildings are applicable in this climate zone,therefore,needs to be carefully considered.In this study,two LTS buildings with different envelopes were established in Haining,China,situated in the HSCW climate zone,and selected as the study objects.Different operation modes were adopted to create a variety of indoor environments.Under each condition,the processes of heat and moisture transfer within the building envelopes and the indoor environment were monitored and compared.The comparison indicated that the building envelope with high moisture storage and insulation ability maintained a relatively stable indoor environment,especially when the environment changed abruptly.Conversely,if the outdoor environment was equable(e.g.,relative humidity within the range of 30%–60%)or intermittent energy consumption modes were adopted,the building envelope with a low thermal inertia index and weak moisture-buffering ability performed better because it enabled a faster response of the indoor environment to air conditioning.Moreover,a high risk of moisture accumulation between the thermal insulation layer and other materials with a large water vapour transfer resistance factor was also identified,suggesting a higher requirement for the vapour insulation of the envelopes of LTS buildings.
文摘The rational and effective combination of multicomponent materials and ingenious microstructure design for efficient electromagnetic wave(EMW)absorption are still challenging.In this paper,MXene was used as the aerogel matrix,modified with sea urchin-like magnetic Co/N-doped carbon@polyaniline(Co-NC@PANI),gelatin was introduced as the reinforcement phase of the aerogel backbone,and a microwave absorber with high efficiency and excellent performance was successfully prepared.The sea urchin-like Co-NC@PANI not only adjusted the impedance matching of the MXene but also introduced a magnetic loss mode into the composite.The multicomponent interfacial polarization,heterostructure,three-dimensional(3D)lightweight porous structure,and electromagnetic synergy strategy enabled the MXene-based aerogel modified by Co-NC@PANI(MCoP)to exhibit surprising EMW absorption properties.The maximum reflection loss(RL_(max))of the aerogel composite reached-62.4 dB,and the effective absorption bandwidth(EAB)reached 6.56 GHz when the loading was only 12%.In addition,through electromagnetic simulation experiments,the change in the electromagnetic field before and after EMW passed through the materials and the distribution of the volume loss density of EMW by the coaxial ring were observed.The coordinated electromagnetic balance strategy in the 3D network provides inspiration for the construction of materials and expands the research direction of lightweight and outstanding microwave absorbers.
基金supported by the National Natural Sciences Foundation of China (31471955)the Natural Science Foundation of Zhejiang Province, China (LY17C090006+1 种基金 Q16C090017 LY18H090014)
文摘Oligodendrocytes(OLs) are myelinating glial cells that form myelin sheaths around axons to ensure rapid and focal conduction of action potentials. Here, we found that an axonal outgrowth regulatory molecule, AATYK(apoptosis-associated tyrosine kinase), was up-regulated with OL differentiation and remyelination. We therefore studied its role in OL differentiation. The results showed that AATYK knockdown inhibited OL differentiation and the expression of myelin genes in vitro. Moreover, AATYKdeficiency maintained the proliferation status of OLs but did not affect their survival. Thus, AATYK is essential for the differentiation of OLs.
基金This work was supported by the Beijing Natural Science Foundation JQ21037the Beijing Municipal Administration of Hospitals Youth Programme QML20191208+1 种基金the Fundamental Research Funds for the Central Universities GK2240260006the Natural Science Foundation of Jiangsu ProvinceBK20200238.
文摘Automated echocardiogram interpretation with artificial intelligence(Al)has the potential to facilitate the serial diagnosis of heart defects by primary clinician.However,the fully automated and interpretable analysis pipeline for suggesting a treatment plan is largely underexplored.