针对干旱绿洲灌区水资源匮乏、玉米生产化肥投入量大等问题,在水氮减量条件下,探讨增大密度对玉米干物质积累、籽粒产量和产量构成的影响,以期为建立水氮减量玉米稳产高效技术体系提供依据。20202021年,在地方习惯灌水减量20%(3240 m^(3...针对干旱绿洲灌区水资源匮乏、玉米生产化肥投入量大等问题,在水氮减量条件下,探讨增大密度对玉米干物质积累、籽粒产量和产量构成的影响,以期为建立水氮减量玉米稳产高效技术体系提供依据。20202021年,在地方习惯灌水减量20%(3240 m^(3)hm^(-2),W1)、习惯灌水(4050 m3hm^(-2),W2)和减量施氮25%(270 kg hm^(-2),N1)、习惯施氮(360 kg hm^(-2),N2)条件下,研究密度从7.50万株hm^(-2)(低,D1)提高30%(中,D2)、60%(高,D3)时,玉米干物质积累及产量的响应特征。研究表明,水、氮减量均显著降低玉米籽粒产量,增密30%可补偿水氮同时减量导致的产量降低效应;施氮量不变降低灌水量时,增密可显著提高产量。2个试验年度内,W1较W2、N1较N2产量分别降低3.0%、12.9%,D2、D3较D1产量分别高12.9%、9.2%;W1N1D1较W2N2D1处理减产12.3%,W1N1D2与W2N2D1处理产量差异不显著。增密30%能够补偿水氮减量减产的主要原因是提高了灌浆初期到成熟期干物质的累积量和成穗数,W1N1D2与W2N2D1相比,灌浆初期到成熟期干物质积累量提高5.8%,Vmax(最大干物质积累速率)、Vmean(平均干物质积累速率)、Tm(最大干物质积累速率出现时间)、HI(收获指数)差异均不显著,穗数增加24.7%,但穗粒数、千粒重分别降低19.3%和14.8%。W1N2D2较W2N2D1处理增产13.9%。当施氮量不变时,减水增密稳产的主要原因是提高了干物质积累量、Vmean、HI和穗数,W1N2D2与W2N2D1相比,穗数、干物质积累、Vmean和HI分别提高24.8%、10.2%、8.4%和4.7%,千粒重差异不显著。因此,本试验水氮同步减量条件下增密30%,是绿洲灌区玉米水氮节约稳产高产的可行措施;在施氮量保持不变但灌水量减少20%时,密度提高30%是玉米节水增产的有效措施。展开更多
文摘针对干旱绿洲灌区水资源匮乏、玉米生产化肥投入量大等问题,在水氮减量条件下,探讨增大密度对玉米干物质积累、籽粒产量和产量构成的影响,以期为建立水氮减量玉米稳产高效技术体系提供依据。20202021年,在地方习惯灌水减量20%(3240 m^(3)hm^(-2),W1)、习惯灌水(4050 m3hm^(-2),W2)和减量施氮25%(270 kg hm^(-2),N1)、习惯施氮(360 kg hm^(-2),N2)条件下,研究密度从7.50万株hm^(-2)(低,D1)提高30%(中,D2)、60%(高,D3)时,玉米干物质积累及产量的响应特征。研究表明,水、氮减量均显著降低玉米籽粒产量,增密30%可补偿水氮同时减量导致的产量降低效应;施氮量不变降低灌水量时,增密可显著提高产量。2个试验年度内,W1较W2、N1较N2产量分别降低3.0%、12.9%,D2、D3较D1产量分别高12.9%、9.2%;W1N1D1较W2N2D1处理减产12.3%,W1N1D2与W2N2D1处理产量差异不显著。增密30%能够补偿水氮减量减产的主要原因是提高了灌浆初期到成熟期干物质的累积量和成穗数,W1N1D2与W2N2D1相比,灌浆初期到成熟期干物质积累量提高5.8%,Vmax(最大干物质积累速率)、Vmean(平均干物质积累速率)、Tm(最大干物质积累速率出现时间)、HI(收获指数)差异均不显著,穗数增加24.7%,但穗粒数、千粒重分别降低19.3%和14.8%。W1N2D2较W2N2D1处理增产13.9%。当施氮量不变时,减水增密稳产的主要原因是提高了干物质积累量、Vmean、HI和穗数,W1N2D2与W2N2D1相比,穗数、干物质积累、Vmean和HI分别提高24.8%、10.2%、8.4%和4.7%,千粒重差异不显著。因此,本试验水氮同步减量条件下增密30%,是绿洲灌区玉米水氮节约稳产高产的可行措施;在施氮量保持不变但灌水量减少20%时,密度提高30%是玉米节水增产的有效措施。