期刊文献+
共找到18篇文章
< 1 >
每页显示 20 50 100
基于最小二乘孪生支持向量机的不确定数据学习算法
1
作者 刘锦能 刘波 《广东工业大学学报》 CAS 2024年第1期79-85,共7页
孪生支持向量机通过计算2个二次规划问题,得到2个不平行的超平面,用于解决二分类问题。然而在实际的应用中,数据通常包含不确定信息,这将会对构建模型带来困难。对此,提出了一种用于求解带有不确定数据的最小二乘孪生支持向量机模型。首... 孪生支持向量机通过计算2个二次规划问题,得到2个不平行的超平面,用于解决二分类问题。然而在实际的应用中,数据通常包含不确定信息,这将会对构建模型带来困难。对此,提出了一种用于求解带有不确定数据的最小二乘孪生支持向量机模型。首先,对于每个实例,该方法都分配一个噪声向量来构建噪声信息。其次,将噪声向量结合到最小二乘孪生支持向量机,并在训练阶段得到优化。最后,采用一个2步循环迭代的启发式框架求解得到分类器和更新噪声向量。实验表明,跟其他对比方法比较,本方法采用噪声向量对不确定信息进行建模,并将孪生支持向量机的二次规划问题转化为线性方程,具有更好的分类精度和更高的训练效率。 展开更多
关键词 最小二乘 孪生支持向量机 不平行平面学习 数据不确定性 分类
下载PDF
基于任务权重自动优化的多任务序数回归算法
2
作者 曾梦岳 刘波 《计算机应用研究》 CSCD 北大核心 2024年第4期1052-1057,共6页
目前,只有少量面向多任务学习的序数回归方法。这些方法假设不同的任务具有相同的权重,对整体模型具有相同的贡献。然而,在真实应用中,不同任务对于整体模型的贡献往往是不同的。为此,提出了一种基于任务权重自动优化的多任务序数回归... 目前,只有少量面向多任务学习的序数回归方法。这些方法假设不同的任务具有相同的权重,对整体模型具有相同的贡献。然而,在真实应用中,不同任务对于整体模型的贡献往往是不同的。为此,提出了一种基于任务权重自动优化的多任务序数回归算法。首先,提出了基于支持向量机的多任务序数回归模型,通过分类器参数共享,实现不同任务之间的信息迁移;其次,考虑到不同任务对整体模型可能具有不同贡献,赋予每个任务一个权重,这些权重将在学习过程中自动优化求解;最后,采用了启发式框架,交替地建立多任务序数回归模型和优化任务权重。实验结果表明,提出方法相比于其他多任务序数回归方法,平均0-1误差降低了3.8%~12.3%,平均绝对误差降低了4.1%~11%。考虑了每个任务的不同权重,通过自动优化这些权重,降低了多任务序数回归模型的分类误差。 展开更多
关键词 序数回归 多任务学习 权重优化
下载PDF
基于多核学习的单分类多示例学习算法
3
作者 古慧敏 刘波 《广东工业大学学报》 CAS 2024年第2期101-107,共7页
将多核学习引入到单分类多示例学习中,提出了一种基于多核学习的单分类多示例支持向量数据描述算法,解决了多核学习方法在实际应用中多示例数据具有比较复杂分布结构的学习问题。本文算法是将多个示例数据通过多个不同的核函数多核映射... 将多核学习引入到单分类多示例学习中,提出了一种基于多核学习的单分类多示例支持向量数据描述算法,解决了多核学习方法在实际应用中多示例数据具有比较复杂分布结构的学习问题。本文算法是将多个示例数据通过多个不同的核函数多核映射到特征空间,在特征空间中通过支持向量数据描述算法构建球形分类器。该算法采用迭代优化框架,首先,根据初始化包中的正示例来优化目标函数以此建立分类器。然后,根据上一步得到的分类器再对包中的正示例的标签进行更新。最后,在Corel、VOC 2007和Messidor数据集上的实验结果表明,所提出的算法比单核多示例方法具有更好的性能,进一步验证了算法的可行性和有效性。 展开更多
关键词 多核学习 单分类 支持向量数据描述 多示例学习
下载PDF
面向不确定数据的序数回归算法 被引量:1
4
作者 李晰 刘波 《计算机工程与设计》 北大核心 2023年第1期174-181,共8页
现有的序数回归方法能够利用先验的有序信息获得比一般多分类方法更加优越的性能,但忽略了仪器不精密和环境扰动等因素产生的复杂不确定性数据。针对序数回归中数据存在的不确定信息问题,基于最大间隔原理,构建面向不确定数据的支持向... 现有的序数回归方法能够利用先验的有序信息获得比一般多分类方法更加优越的性能,但忽略了仪器不精密和环境扰动等因素产生的复杂不确定性数据。针对序数回归中数据存在的不确定信息问题,基于最大间隔原理,构建面向不确定数据的支持向量序数回归模型。实验结果表明,模型可以减少不确定数据对决策边界的影响,增强学习模型的鲁棒性。 展开更多
关键词 机器学习 多分类学习 不确定数据 序数回归 有序信息 最大间隔原理 支持向量机
下载PDF
我国政府信息公开制度述评 被引量:4
5
作者 赖茂生 《数字图书馆论坛》 2008年第5期2-9,共8页
文章梳理了我国政府信息公开制度的发展过程。详细阐述了《中华人民共和国政府信息公开条例》中有关政府信息公开的目的、原则、责任主体、公开范围、公开程序、相关责任和救济措施等重要条款的内容。评述了该条例在遏制腐败、保障公民... 文章梳理了我国政府信息公开制度的发展过程。详细阐述了《中华人民共和国政府信息公开条例》中有关政府信息公开的目的、原则、责任主体、公开范围、公开程序、相关责任和救济措施等重要条款的内容。评述了该条例在遏制腐败、保障公民权利、促进政府执政理念转变和政治体制改革以及加强政府信息资源开发利用方面的重要意义和作用,指出了它在基本原则、明确规定政府信息公开范围、行政机关权力缺乏制约以及相关法律不配套等方面的不足,并提出了若干建议。 展开更多
关键词 政府信息公开 制度 中国 历史 现状
下载PDF
基于抗噪声的多任务多示例学习算法研究 被引量:4
6
作者 黎启祥 +1 位作者 郝志峰 阮奕邦 《广东工业大学学报》 CAS 2018年第3期47-53,共7页
在多示例学习中,当训练样本数量不充足或者训练样本中存在噪声信息时,分类器的分类性能将降低.针对该问题,本文提出了一种基于抗噪声的多任务多示例学习算法.一方面,针对训练样本中可能存在的噪声问题,该算法赋予包中示例不同的权值,通... 在多示例学习中,当训练样本数量不充足或者训练样本中存在噪声信息时,分类器的分类性能将降低.针对该问题,本文提出了一种基于抗噪声的多任务多示例学习算法.一方面,针对训练样本中可能存在的噪声问题,该算法赋予包中示例不同的权值,通过迭代更新权值来降低噪声数据对预测结果的影响.另一方面,针对训练样本数量不充足问题,该算法运用多任务学习策略,通过同时训练多个学习任务,利用任务间的关联性来提高各个分类任务的预测性能.实验结果证明,与现有的分类算法相比,该方法在相同的实验条件下具有更优秀的性能. 展开更多
关键词 多示例学习 抗噪声 多任务学习 关联性 分类器
下载PDF
基于SVM的多示例多标签主动学习 被引量:4
7
作者 李杰龙 +2 位作者 郝志峰 阮奕邦 张丽阳 《计算机工程与设计》 北大核心 2016年第1期254-258,共5页
针对近年出现的多示例多标签学习,把主动学习应用到其框架上,提出一种基于支持向量机最小分类距离的多示例多标签主动学习方法。引入支持向量机的最小分类距离,提出分类器对未标记多示例包的置信度,在学习过程中,迭代地主动选择最能改... 针对近年出现的多示例多标签学习,把主动学习应用到其框架上,提出一种基于支持向量机最小分类距离的多示例多标签主动学习方法。引入支持向量机的最小分类距离,提出分类器对未标记多示例包的置信度,在学习过程中,迭代地主动选择最能改善分类器性能的未标记多示例包添加到训练集中进行学习,有效减少训练多示例包的成本,改善分类器性能。实验结果表明,与样本随机选择策略相比,该方法在训练样本相同的情况下能够获得更好的分类性能。 展开更多
关键词 主动学习 多示例多标签学习 支持向量机 最小分类距离 置信度
下载PDF
一分类最优间隔分布机
8
作者 林钧涛 刘波 《计算机应用研究》 CSCD 北大核心 2023年第9期2749-2754,共6页
现有的一分类支持向量机算法基于优化最小间隔的思想,只考虑了样本靠近空间原点一侧的噪声,对噪声信息较为敏感。针对该问题,通过优化间隔分布思想,同时考虑样本靠近空间原点和远离空间原点两侧的噪声,提高一分类支持向量机算法的抗噪... 现有的一分类支持向量机算法基于优化最小间隔的思想,只考虑了样本靠近空间原点一侧的噪声,对噪声信息较为敏感。针对该问题,通过优化间隔分布思想,同时考虑样本靠近空间原点和远离空间原点两侧的噪声,提高一分类支持向量机算法的抗噪声能力。为此,提出了一种基于最优间隔分布的一分类学习方法(one-class optimal margin distribution machine,OCODM),该方法通过最大化间隔的均值和最小化间隔方差的方式来优化间隔分布。实验结果表明,相比于现有的一分类支持向量机算法,该方法具有更好的鲁棒性,是现有一分类支持向量机方法的有益补充,能够增强现有方法的抗噪声能力。 展开更多
关键词 一分类学习 间隔分布 一分类支持向量机
下载PDF
融合语义差别和流型学习的偏标记学习方法
9
作者 赵亮 +1 位作者 刘波 古慧敏 《计算机应用研究》 CSCD 北大核心 2023年第3期760-765,共6页
偏标记学习是一种重要的弱监督学习框架。在偏标记学习中,每个实例与一组候选标记相关联,它的真实标记隐藏在候选标记集合中,且在学习过程中不可获知。为了消除候选标记对学习过程的影响,提出了一种融合实例语义差别最大化和流型学习的... 偏标记学习是一种重要的弱监督学习框架。在偏标记学习中,每个实例与一组候选标记相关联,它的真实标记隐藏在候选标记集合中,且在学习过程中不可获知。为了消除候选标记对学习过程的影响,提出了一种融合实例语义差别最大化和流型学习的偏标记学习方法(partial label learning by semantic difference and manifold learning, PL-SDML)。该方法是一个两阶段的方法:在训练阶段,基于实例的语义差别最大化准则和流型学习方法为训练实例生成标记置信度;在预测阶段,使用基于最近邻投票的方法为未知实例预测标记类别。在四组人工改造的UCI数据集中,在平均70%的情况下优于其他对比算法。在四组真实偏标记数据集中,相比其他对比算法,取得了0.3%~13.8%的性能提升。 展开更多
关键词 偏标记学习 流型学习 语义差别
下载PDF
差分隐私DPE k-means数据聚合下的多维数据可视化 被引量:3
10
作者 李杨 郝志峰 +2 位作者 袁淦钊 谢光强 《小型微型计算机系统》 CSCD 北大核心 2013年第7期1637-1640,共4页
近年来隐私保护下的数据挖掘发展迅速,但应用广泛的数据可视化中的隐私保护问题则成果鲜见,差分隐私保护是一种新兴的具有广阔发展前景的隐私保护方法,目前,差分隐私保护下的多维数据可视化方法却未见报道.文章研究如何在数据可视化的... 近年来隐私保护下的数据挖掘发展迅速,但应用广泛的数据可视化中的隐私保护问题则成果鲜见,差分隐私保护是一种新兴的具有广阔发展前景的隐私保护方法,目前,差分隐私保护下的多维数据可视化方法却未见报道.文章研究如何在数据可视化的过程中满足差分隐私保护.现有的DP k-means算法不支持较大的k,因此在数据聚合的过程中仅有理论意义.提出一个ε-Differential Privacy Equipartition k-means算法(DPE k-means),能够支持较大的k,较好地解决了可视化中数据的叠加问题,在一定的隐私保护级别下极大地改善了数据可视化后的图像质量.仿真实验中计算了衡量数据聚合质量的几项指标,结果表明DPE k-means算法优于现有的DP k-means算法. 展开更多
关键词 差分隐私保护 K-均值 数据聚合 数据可视化 平行坐标
下载PDF
基于半监督的SVM迁移学习文本分类算法 被引量:3
11
作者 谭建平 刘波 《无线互联科技》 2016年第4期71-75,共5页
随着互联网的快速发展,文本信息量巨大,大规模的文本处理已经成为一个挑战。文本处理的一个重要技术便是分类,基于SVM的传统文本分类算法已经无法满足快速的文本增长分类。于是如何利用过时的历史文本数据(源任务数据)进行迁移来帮助新... 随着互联网的快速发展,文本信息量巨大,大规模的文本处理已经成为一个挑战。文本处理的一个重要技术便是分类,基于SVM的传统文本分类算法已经无法满足快速的文本增长分类。于是如何利用过时的历史文本数据(源任务数据)进行迁移来帮助新产生文本数据进行分类显得异常重要。文章提出了基于半监督的SVM迁移学习算法(Semi-supervised TL_SVM)来对文本进行分类。首先,在半监督SVM的模型中引入迁移学习,构建分类模型。其次,采用交互迭代的方法对目标方程求解,最终得到面向目标领域的分类器。实验验证了基于半监督的SVM迁移学习分类器具有比传统分类器更高的精确度。 展开更多
关键词 文本分类 半监督学习 迁移学习 算法
下载PDF
基于相似度的两视角多示例图像分类方法研究 被引量:2
12
作者 尹子健 刘波 《计算机科学与应用》 2020年第2期350-360,共11页
在实际中,某些数据中包含许多特权信息,可用于训练分类器,从而提高分类性能。例如,在图像分类中,标签用于描述图像,这些标签可视为特权信息,特权信息与图像互补,可以用于学习以此提高图像分类性能。多示例学习和两视角学习的特性适用于... 在实际中,某些数据中包含许多特权信息,可用于训练分类器,从而提高分类性能。例如,在图像分类中,标签用于描述图像,这些标签可视为特权信息,特权信息与图像互补,可以用于学习以此提高图像分类性能。多示例学习和两视角学习的特性适用于带有特权信息的图像分类,因此提出了一种基于相似度的两视角多示例方法用于带有特权信息的图像分类。所提方法将一张图像视为一个示例,若干张图像的集合视为包,将特权信息视为示例。为解决实际中示例的标签是未知的问题,因而引入相似度模型。所提方法首先将图像和特权信息划分为两个不同的视角,然后使用聚类算法构造包,最后训练支持向量机分类器。在四个数据集上的实验结果表明,所提方法与其他相类似模型相比精确率更高,并比较了两种包的聚类算法,分析了各参数敏感度。 展开更多
关键词 多示例学习 两视角学习 图像分类 支持向量机 特权信息
下载PDF
交互迭代一对一分类算法 被引量:2
13
作者 刘波 郝志峰 《模式识别与人工智能》 EI CSCD 北大核心 2008年第4期425-431,共7页
在基于支持向量机的多分类算法中,一对一算法表现出较好的性能.然而此算法却存在不可分区域,落入该区域的样本不能有效被识别,因此影响了一对一算法的性能.为解决这个难题,提出交互迭代一对一分类算法,同时给出算法的有效性分析和计算... 在基于支持向量机的多分类算法中,一对一算法表现出较好的性能.然而此算法却存在不可分区域,落入该区域的样本不能有效被识别,因此影响了一对一算法的性能.为解决这个难题,提出交互迭代一对一分类算法,同时给出算法的有效性分析和计算复杂度证明.为了验证该算法解决不可分区域的能力,我们选用 UCI 数据集来做对比实验.实验结果显示,本文算法不但可以较成功解决不可分区域问题而且表现出比其它算法更好的性能. 展开更多
关键词 支持向量机 多分类算法 一对一算法 模糊支持向量机 有向无环图算法
原文传递
基于实例的多视角多标签学习算法
14
作者 苏可政 刘波 《计算机科学与应用》 2022年第4期785-796,共12页
在多视角多标签学习中,一个实例可以由多个数据视角表示,并与多个类标签相关联。目前现有的多视角多标签学习算法研究的是变量与类标签之间的关系。在这篇文章中,我们提出了一种基于实例的多视角多标签学习算法。与现有的多视角多标签... 在多视角多标签学习中,一个实例可以由多个数据视角表示,并与多个类标签相关联。目前现有的多视角多标签学习算法研究的是变量与类标签之间的关系。在这篇文章中,我们提出了一种基于实例的多视角多标签学习算法。与现有的多视角多标签算法不同,我们利用训练实例和测试实例的相关性进行建模。在多视角多标签学习中,数据来自多个视角。在每个视角中,通过构建偏最小二乘回归模型来探索训练实例和测试实例之间的相关性,而不是像传统的多视角多标签学习算法一样探索变量和类标签之间的映射函数。因此,我们可以从多视角数据中学习到多个偏最小二乘回归模型。此外,为了保证不同视角的一致性,在多个回归模型中加入视角一致性约束。对比实验表明,与现有的多视角多标签算法相比,所提算法获得了更好的分类结果。 展开更多
关键词 偏最小二乘(PLS)回归 多视角多标签学习 视角一致性
下载PDF
基于示例加权的稀疏正包多示例学习 被引量:1
15
作者 张丽阳 郝志峰 +2 位作者 阮奕邦 李杰龙 《计算机工程与设计》 北大核心 2016年第5期1271-1274,共4页
为降低多示例学习中噪声示例对分类结果的影响,提出赋予包示例不同的权值,不断更新分类器,调整权值,提高分类精度。在传统的多示例学习中,训练集由若干个包组成,每个包包含若干个示例,包示例标签未知。受获取数据的环境和传输过程等不... 为降低多示例学习中噪声示例对分类结果的影响,提出赋予包示例不同的权值,不断更新分类器,调整权值,提高分类精度。在传统的多示例学习中,训练集由若干个包组成,每个包包含若干个示例,包示例标签未知。受获取数据的环境和传输过程等不确定因素的影响,现实世界的数据极易受到噪声的干扰,在多示例学习中,正包中存在正示例,也可能包含负示例噪声,这些噪声会影响分类效果。实验结果表明,该方法具有更好的分类能力。 展开更多
关键词 多示例学习 噪声 示例加权 稀疏正包 分类
下载PDF
基于弱标签的多示例迁移学习方法 被引量:1
16
作者 梁飞 刘波 《计算机应用研究》 CSCD 北大核心 2021年第1期125-128,共4页
作为监督学习的一种变体,多示例学习(MIL)试图从包中的示例中学习分类器。在多示例学习中,标签与包相关联,而不是与单个示例相关联。包的标签是已知的,示例的标签是未知的。MIL可以解决标记模糊问题,但要解决带有弱标签的问题并不容易... 作为监督学习的一种变体,多示例学习(MIL)试图从包中的示例中学习分类器。在多示例学习中,标签与包相关联,而不是与单个示例相关联。包的标签是已知的,示例的标签是未知的。MIL可以解决标记模糊问题,但要解决带有弱标签的问题并不容易。对于弱标签问题,包和示例的标签都是未知的,但它们是潜在的变量。现在有多个标签和示例,可以通过对不同标签进行加权来近似估计包和示例的标签。提出了一种新的基于迁移学习的多示例学习框架来解决弱标签的问题。首先构造了一个基于多示例方法的迁移学习模型,该模型可以将知识从源任务迁移到目标任务中,从而将弱标签问题转换为多示例学习问题。在此基础上,提出了一种求解多示例迁移学习模型的迭代框架。实验结果表明,该方法优于现有多示例学习方法。 展开更多
关键词 多示例学习 迁移学习 弱标签
下载PDF
基于Universum数据的多视角学习算法
17
作者 曾博 刘波 《计算机科学与应用》 2021年第3期672-681,共10页
多视角学习是以不同方法获得的特征集表示的数据中学习的问题,其中双视角学习是一种仅由双视角数据组成的多视角学习。由于多视角学习可能会忽略一些多视角数据的原始信息,这些数据之间存在着内在的联系和不同视角之间的差异。因此,为... 多视角学习是以不同方法获得的特征集表示的数据中学习的问题,其中双视角学习是一种仅由双视角数据组成的多视角学习。由于多视角学习可能会忽略一些多视角数据的原始信息,这些数据之间存在着内在的联系和不同视角之间的差异。因此,为了解决多视角数据之间存在的问题,我们引入了既不属于正类又不属于负类的无标签数据Universum数据。本文提出了一种基于Universum数据的多视角学习算法,将Universum数据和多视角学习结合到一个目标模型中,其中Universum数据被认为是该模型的先验知识。为了解决提出的算法模型,我们推导了该算法模型的对偶问题并得到了预测分类器。最后,通过大量的实验对该方法的性能进行了研究,结果表明,所提算法的性能优于传统的方法。 展开更多
关键词 多视角学习 Universum数据 支持向量机
下载PDF
一种基于标签比例信息的迁移学习算法
18
作者 汪槐沛 刘波 《计算机科学与应用》 2020年第2期340-349,共10页
标签比例学习问题是一项仅使用样本标签比例信息去构建分类模型的挖掘任务,由于训练样本不充分,现有方法将该问题视为单一任务,在文本分类中的表现并不理想。考虑到迁移学习在一定程度上能解决训练数据不充分的问题,于是如何利用历史数... 标签比例学习问题是一项仅使用样本标签比例信息去构建分类模型的挖掘任务,由于训练样本不充分,现有方法将该问题视为单一任务,在文本分类中的表现并不理想。考虑到迁移学习在一定程度上能解决训练数据不充分的问题,于是如何利用历史数据(原任务数据)帮助新产生的数据(目标任务数据)进行分类显得异常重要。本文提出了一种基于标签比例信息的迁移学习算法,将知识从原任务迁移到目标任务,帮助目标任务更好构建分类器。为了获得迁移学习模型,该方法将原始优化问题转换为凸优化问题,然后解决对偶优化问题为目标任务建立准确的分类器。实验结果表明,大部分条件下所提算法性能优于传统方法。 展开更多
关键词 标签比例学习 数据挖掘 迁移学习
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部