期刊文献+

基于示例加权的稀疏正包多示例学习 被引量:1

Sparse positive bags for multiple instance learning based on instance weighting
下载PDF
导出
摘要 为降低多示例学习中噪声示例对分类结果的影响,提出赋予包示例不同的权值,不断更新分类器,调整权值,提高分类精度。在传统的多示例学习中,训练集由若干个包组成,每个包包含若干个示例,包示例标签未知。受获取数据的环境和传输过程等不确定因素的影响,现实世界的数据极易受到噪声的干扰,在多示例学习中,正包中存在正示例,也可能包含负示例噪声,这些噪声会影响分类效果。实验结果表明,该方法具有更好的分类能力。 To decrease the influence of noise in multiple instance learning,all instances in bags with different weights were proposed,the classifier was updated,weights were adjusted to improve classification accuracy.In traditional multiple instance learning,the training set is composed of a set of bags,each bag contains many instances,and instance label is unknown.Because of many uncertain factors,such as the acquisition environment,the transmission process and so on,the data are influenced by the noise.Also,positive bag may contain negative instance noise and not all instances in it are positive,results of classification are affected by noise.Experimental results show that the proposed algorithm has better classification capability.
出处 《计算机工程与设计》 北大核心 2016年第5期1271-1274,共4页 Computer Engineering and Design
基金 国家自然科学基金项目(61472089 61202270)
关键词 多示例学习 噪声 示例加权 稀疏正包 分类 multiple instance learning noise instance weighted sparse positive bags classification
  • 相关文献

参考文献10

  • 1Dietterich TG, Lathrop RH, Lozano-Perez T. Solving the multiple instance problem with axis-parallel rectangles [J]. Articial Intelligence, 1997, 89 (1-2) 31-71. 被引量:1
  • 2Andrews S, Tsochantaridis I, Hofmann T. Support vector machines for multiple-instance learning [C] //Advances in Neural Information Processing Systems 15, 2003: 561-568. 被引量:1
  • 3Zhang Q, Goldman SA. EM-DD: An improved multiple-in- stance learning technique [C] //Advances in Neural Informa- tion Processing Systems 14, 2002: 1073-1080. 被引量:1
  • 4Maron O, Lozano-Perez T. A framework for multiple-instance learning [C] //Advances in Neural Information Processing Systems 10, 1998: 570-576. 被引量:1
  • 5Wang H, Huang H, Kamangar F, et al. Maximum margin multi-instance learning [C] //Advances in Neural Information Processing Systems 24, 2011: 1-9. 被引量:1
  • 6Cheplygina V, Tax MJD, Loog M. Multiple instance learning with bag dissimilarities [J]. Pattern Recognition, 2015, 48 (1) :264-275. 被引量:1
  • 7Bunescu RC, Mooney RJ. Multiple instance learning for sparse positive bags [C] //Proceedings of the 24th International Con- ference on Machine Learning, 2007:105- 112. 被引量:1
  • 8Duan L, Li W, Tsang I W-H, et al. Improving Web image search by bag-based reranking [J]. IEEE Transactions on Image Processing, 2011, 20 (11): 3280-3290. 被引量:1
  • 9Gartner T, Flach PA, Kowalczyk A, et al. Multi-instance kernels [C] //Proceedings of the 19th International Conference on Machine Learning, 2002: 179-186. 被引量:1
  • 10Collobert R, Sinz F, Weston J, et al. Large scale transdu- tive SVMs [J]. Journal of Machine Learning Research, 2006, 7: 1687-1712. 被引量:1

同被引文献12

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部