深度学习技术的应用给SAR图像目标识别带来了大幅度的性能提升,但其对实际应用中车辆目标局部部件的变化适应能力仍有待加强。利用数据内在先验知识,在高维语义特征中学习其内在的低维子空间结构,可以提升分类模型在车辆目标变体条件下...深度学习技术的应用给SAR图像目标识别带来了大幅度的性能提升,但其对实际应用中车辆目标局部部件的变化适应能力仍有待加强。利用数据内在先验知识,在高维语义特征中学习其内在的低维子空间结构,可以提升分类模型在车辆目标变体条件下的泛化性能。本文基于目标特征的稀疏性,提出了一种稀疏先验引导卷积神经网络(Convolution Neural Network,CNN)学习的SAR目标识别方法(CNN-TDDL)。首先,该方法利用CNN提取SAR图像目标的高维语义特征。其次,通过稀疏先验引导模块,利用特征稀疏性,对目标特征内在的低维子空间结构进行学习。分类任务驱动的字典学习层(Task-Driven Dictionary Learning,TDDL)将目标特征的低维子空间以稀疏编码的形式表示,再利用非负弹性正则网增强了稀疏编码的稳定性,使稀疏编码不仅有效地表征目标的低维子空间结构,并且能够提取更具判别性的类别特征。基于运动和静止目标获取与识别(Moving and Stationary Target Acquisition and Recognition,MSTAR)数据集以及仿真和实测配对和标记实验(Synthetic and Measured Paired and Labeled Experiment,SAMPLE)数据集的实验表明,相比于传统字典学习方法和典型深度学习方法,CNN-TDDL在MSTAR标准操作条件(Standard Operating Conditions,SOC)下识别精度提升0.85%~5.28%,型号识别精度提升3.97%以上,表现出更好的泛化性能。特征可视化分析表明稀疏先验引导模块显著提升了异类目标特征表示的可分性。展开更多
文摘深度学习技术的应用给SAR图像目标识别带来了大幅度的性能提升,但其对实际应用中车辆目标局部部件的变化适应能力仍有待加强。利用数据内在先验知识,在高维语义特征中学习其内在的低维子空间结构,可以提升分类模型在车辆目标变体条件下的泛化性能。本文基于目标特征的稀疏性,提出了一种稀疏先验引导卷积神经网络(Convolution Neural Network,CNN)学习的SAR目标识别方法(CNN-TDDL)。首先,该方法利用CNN提取SAR图像目标的高维语义特征。其次,通过稀疏先验引导模块,利用特征稀疏性,对目标特征内在的低维子空间结构进行学习。分类任务驱动的字典学习层(Task-Driven Dictionary Learning,TDDL)将目标特征的低维子空间以稀疏编码的形式表示,再利用非负弹性正则网增强了稀疏编码的稳定性,使稀疏编码不仅有效地表征目标的低维子空间结构,并且能够提取更具判别性的类别特征。基于运动和静止目标获取与识别(Moving and Stationary Target Acquisition and Recognition,MSTAR)数据集以及仿真和实测配对和标记实验(Synthetic and Measured Paired and Labeled Experiment,SAMPLE)数据集的实验表明,相比于传统字典学习方法和典型深度学习方法,CNN-TDDL在MSTAR标准操作条件(Standard Operating Conditions,SOC)下识别精度提升0.85%~5.28%,型号识别精度提升3.97%以上,表现出更好的泛化性能。特征可视化分析表明稀疏先验引导模块显著提升了异类目标特征表示的可分性。