Let(X,d,)be a metric measure space satisfying both the geometrically doubling and the upper doubling conditions.Let ρ∈(1,∞),0<p≤1≤q≤∞,p≠q,γ∈[1,∞)and ∈∈(0,∞).In this paper,the authors introduce the ato...Let(X,d,)be a metric measure space satisfying both the geometrically doubling and the upper doubling conditions.Let ρ∈(1,∞),0<p≤1≤q≤∞,p≠q,γ∈[1,∞)and ∈∈(0,∞).In this paper,the authors introduce the atomic Hardy space Hp,q,γ atb,ρ(μ)and the molecular Hardy space Hp,q,γ,mb,ρ∈(μ)via the discrete coefficient K(ρ),p B,S,and prove that the Calder′on-Zygmund operator is bounded from Hp,q,γ,δmb,ρ(μ)(or Hp,q,γatb,ρ(μ))into Lp(μ),and from Hp,q,γ+1atb,ρ(ρ+1)(μ)into H p,q,γ,12(δ-νp+ν)mb,ρ(μ).The boundedness of the generalized fractional integral Tβ(β∈(0,1))from Hp1,q,γ,θmb,ρ(μ)(or Hp1,q,γatb,ρ(μ))into Lp2(μ)with 1/p2=1/p1-β is also established.The authors also introduce theρ-weakly doubling condition,withρ∈(1,∞),of the measure and construct a non-doubling measure satisfying this condition.If isρ-weakly doubling,the authors further introduce the Campanato space Eα,qρ,η,γ(μ)and show that Eα,qρ,η,γ(μ)is independent of the choices ofρ,η,γand q;the authors then introduce the atomic Hardy space Hp,q,γatb,ρ(μ)and the molecular Hardy space Hp,q,γ,mb,ρ(μ),which coincide with each other;the authors finally prove that Hp,q,γatb,ρ(μ)is the predual of E1/p-1,1ρ,ρ,1(μ).Moreover,if is doubling,the authors show that Eα,qρ,η,γ(μ)and the Lipschitz space Lipα,q(μ)(q∈[1,∞)),or Hp,q,γatb,ρ(μ)and the atomic Hardy space Hp,q at(μ)(q∈(1,∞])of Coifman and Weiss coincide.Finally,if(X,d,)is an RD-space(reverse doubling space)with(X)=∞,the authors prove that Hp,q,γatb,ρ(μ),Hp,q,γ,mb,ρ(μ)and Hp,q at(μ)coincide for any q∈(1,2].In particular,when(X,d,):=(RD,||,dx)with dx being the D-dimensional Lebesgue measure,the authors show that spaces Hp,q,γatb,ρ(μ),Hp,q,γ,mb,ρ(μ),Hp,q,γatb,ρ(μ)and Hp,q,γ,mb,ρ(μ)all coincide with Hp(RD)for any q∈(1,∞).展开更多
In this paper,the sharp bound for the weak-type(1,1) inequality for the n-dimensional Hardy operator is obtained.Moreover,the precise norms of generalized Hardy operators on the type of Campanato spaces are worked out...In this paper,the sharp bound for the weak-type(1,1) inequality for the n-dimensional Hardy operator is obtained.Moreover,the precise norms of generalized Hardy operators on the type of Campanato spaces are worked out.As applications,the corresponding norms of the Riemann-Liouville integral operator and the n-dimensional Hardy operator are deduced.It is also proved that the n-dimensional Hardy operator maps from the Hardy space into the Lebesgue space.The endpoint estimate for the commutator generated by the Hardy operator and the(central) BMO function is also discussed.展开更多
We establish the theory of Orlicz-Hardy spaces generated by a wide class of functions.The class will be wider than the class of all the N-functions.In particular,we consider the non-smooth atomic decomposition.The rel...We establish the theory of Orlicz-Hardy spaces generated by a wide class of functions.The class will be wider than the class of all the N-functions.In particular,we consider the non-smooth atomic decomposition.The relation between Orlicz-Hardy spaces and their duals is also studied.As an application,duality of Hardy spaces with variable exponents is revisited.This work is different from earlier works about Orlicz-Hardy spaces H(Rn)in that the class of admissible functions is largely widened.We can deal with,for example,Ф(r)≡(rp1(log(e+1/r))q1,0〈r≤1,r^p2 (log(e+r))q2,r〉1,with p1,p2∈(0,∞)and q1,q2∈(.∞,∞),where we shall establish the boundedness of the Riesz transforms on H(Rn).In particular,is neither convex nor concave when 0〈p1〈1〈p2〈∞,0〈p21〈p1〈∞or p1=p2=1 and q1,q20.If(r)≡r(log(e+r))q,then H(Rn)=H(logH)q(Rn).We shall also establish the boundedness of the fractional integral operators I of order∈(0,∞).For example,I is shown to be bounded from H(logH)1^1-α/n(Rn)to Ln/(n-α)(log L)(Rn)for 0〈α〈n.展开更多
Let L be a one-to-one operator of type w having a bounded H∞ functional calculus and satisfying the k-Davies-Gaffney estimates with k C N. In this paper, the authors introduce the Hardy space HPL(Rn) with p ∈(0, ...Let L be a one-to-one operator of type w having a bounded H∞ functional calculus and satisfying the k-Davies-Gaffney estimates with k C N. In this paper, the authors introduce the Hardy space HPL(Rn) with p ∈(0, 1] associated with L in terms of square functions defined via {e-t2kL}t〉O and establish their molecular and generalized square function characterizations. Typical examples of such operators include the 2k-order divergence form homogeneous elliptic operator L1 with complex bounded measurable coefficients and the 2k-order Schr6dinger type operator L2 := (-△)k + Vk, where A is the Laplacian and 0≤V C Llkoc(Rn). Moreover, as an application, for i E {1, 2}, the authors prove that the associated Riesz transform Vk(Li-1/2) p n HP(Rn) for @ (n/(n + k), 1] and establish the Riesz transform characterizations is bounded from HLI(IR ) to p of HPL1(]Rn) for p C (rn/(n + kr), 1] if {e-tL1 }t〉o satisfies the Lr - L2 k-off-diagonal estimates with r C (1, 2]. These results when k := I and L := L1 are known.展开更多
Let L be a linear operator in L^2(R^n) and generate an analytic semigroup {e^-tL}t≥0 with kernel satisfying an upper bound estimate of Poisson type, whose decay is measured by θ(L) ∈ (0, ∞). Let 4) be a pos...Let L be a linear operator in L^2(R^n) and generate an analytic semigroup {e^-tL}t≥0 with kernel satisfying an upper bound estimate of Poisson type, whose decay is measured by θ(L) ∈ (0, ∞). Let 4) be a positive, continuous and strictly increasing function on (0, ∞), which is of strictly critical lower type pФ (n/(n + θ(L)), 1]. Denote by HФ, L(R^n) the Orlicz-Hardy space introduced in Jiang, Yang and Zhou's paper in 2009. If Ф is additionally of upper type 1 and subadditive, the authors then show that the Littlewood-Paley g-function gL maps HФ, L(R^n) continuously into LФ(R^n) and, moreover, the authors characterize HФ, L(R^n) in terms of the Littlewood-Paley gλ^*-function with λ ∈ (n(2/pФ + 1), ∞). If Ф is further slightly strengthened to be concave, the authors show that a generalized Riesz transform associated with L is bounded from HФ, L(R^n) to the Orlicz space L^Ф(R^n) or the Orlicz-Hardy space HФ (R^n); moreover, the authors establish a new subtle molecular characterization of HФ, L (R^n) associated with L and, as applications, the authors then show that the corresponding fractional integral L^-γ for certain γ∈ E (0,∞) maps HФ, L(R^n) continuously into HФ, L(R^n), where Ф satisfies the same properties as Ф and is determined by Ф and λ and also that L has a bounded holomorphic functional calculus in HФ, L(R^n). All these results are new even when Ф(t) = t^p for all t ∈ (0, ∞) and p ∈ (n/(n + θ(L)), 1].展开更多
In this paper,some properties of Hardy-Sobolev spaces are obtained. The multipliers on these spaces are defined,and our results show that the multiplier algebra is more complex than that on the classical Hardy spaces....In this paper,some properties of Hardy-Sobolev spaces are obtained. The multipliers on these spaces are defined,and our results show that the multiplier algebra is more complex than that on the classical Hardy spaces. In addition,the spectrum theorem is obtained for some special multiplier.展开更多
基金supported by National Natural Science Foundation of China(Grant Nos.11301534,11171027,11361020 and 11101339)Da Bei Nong Education Fund(Grant No.1101-2413002)+1 种基金the Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.20120003110003)the Fundamental Research Funds for Central Universities of China(Grant Nos.2012LYB26,2012CXQT09,2013YB60 and 2014KJJCA10)
文摘Let(X,d,)be a metric measure space satisfying both the geometrically doubling and the upper doubling conditions.Let ρ∈(1,∞),0<p≤1≤q≤∞,p≠q,γ∈[1,∞)and ∈∈(0,∞).In this paper,the authors introduce the atomic Hardy space Hp,q,γ atb,ρ(μ)and the molecular Hardy space Hp,q,γ,mb,ρ∈(μ)via the discrete coefficient K(ρ),p B,S,and prove that the Calder′on-Zygmund operator is bounded from Hp,q,γ,δmb,ρ(μ)(or Hp,q,γatb,ρ(μ))into Lp(μ),and from Hp,q,γ+1atb,ρ(ρ+1)(μ)into H p,q,γ,12(δ-νp+ν)mb,ρ(μ).The boundedness of the generalized fractional integral Tβ(β∈(0,1))from Hp1,q,γ,θmb,ρ(μ)(or Hp1,q,γatb,ρ(μ))into Lp2(μ)with 1/p2=1/p1-β is also established.The authors also introduce theρ-weakly doubling condition,withρ∈(1,∞),of the measure and construct a non-doubling measure satisfying this condition.If isρ-weakly doubling,the authors further introduce the Campanato space Eα,qρ,η,γ(μ)and show that Eα,qρ,η,γ(μ)is independent of the choices ofρ,η,γand q;the authors then introduce the atomic Hardy space Hp,q,γatb,ρ(μ)and the molecular Hardy space Hp,q,γ,mb,ρ(μ),which coincide with each other;the authors finally prove that Hp,q,γatb,ρ(μ)is the predual of E1/p-1,1ρ,ρ,1(μ).Moreover,if is doubling,the authors show that Eα,qρ,η,γ(μ)and the Lipschitz space Lipα,q(μ)(q∈[1,∞)),or Hp,q,γatb,ρ(μ)and the atomic Hardy space Hp,q at(μ)(q∈(1,∞])of Coifman and Weiss coincide.Finally,if(X,d,)is an RD-space(reverse doubling space)with(X)=∞,the authors prove that Hp,q,γatb,ρ(μ),Hp,q,γ,mb,ρ(μ)and Hp,q at(μ)coincide for any q∈(1,2].In particular,when(X,d,):=(RD,||,dx)with dx being the D-dimensional Lebesgue measure,the authors show that spaces Hp,q,γatb,ρ(μ),Hp,q,γ,mb,ρ(μ),Hp,q,γatb,ρ(μ)and Hp,q,γ,mb,ρ(μ)all coincide with Hp(RD)for any q∈(1,∞).
基金supported by National Natural Science Foundation of China(Grant Nos. 10931001,10901076 and 11171345)Shanghai Leading Academic Discipline Project(Grant No.J50101)supported by the Key Laboratory of Mathematics and Complex System(Beijing Normal University),Ministry of Education,China
文摘In this paper,the sharp bound for the weak-type(1,1) inequality for the n-dimensional Hardy operator is obtained.Moreover,the precise norms of generalized Hardy operators on the type of Campanato spaces are worked out.As applications,the corresponding norms of the Riemann-Liouville integral operator and the n-dimensional Hardy operator are deduced.It is also proved that the n-dimensional Hardy operator maps from the Hardy space into the Lebesgue space.The endpoint estimate for the commutator generated by the Hardy operator and the(central) BMO function is also discussed.
基金supported by Grant-in-Aid for Scientific Research (C) of Japan Society for the Promotion of Science (Grant No. 24540159)Grant-in-Aid for Young Scientists (B) of Japan Society for the Promotion of Science (Grant No. 24540085)
文摘We establish the theory of Orlicz-Hardy spaces generated by a wide class of functions.The class will be wider than the class of all the N-functions.In particular,we consider the non-smooth atomic decomposition.The relation between Orlicz-Hardy spaces and their duals is also studied.As an application,duality of Hardy spaces with variable exponents is revisited.This work is different from earlier works about Orlicz-Hardy spaces H(Rn)in that the class of admissible functions is largely widened.We can deal with,for example,Ф(r)≡(rp1(log(e+1/r))q1,0〈r≤1,r^p2 (log(e+r))q2,r〉1,with p1,p2∈(0,∞)and q1,q2∈(.∞,∞),where we shall establish the boundedness of the Riesz transforms on H(Rn).In particular,is neither convex nor concave when 0〈p1〈1〈p2〈∞,0〈p21〈p1〈∞or p1=p2=1 and q1,q20.If(r)≡r(log(e+r))q,then H(Rn)=H(logH)q(Rn).We shall also establish the boundedness of the fractional integral operators I of order∈(0,∞).For example,I is shown to be bounded from H(logH)1^1-α/n(Rn)to Ln/(n-α)(log L)(Rn)for 0〈α〈n.
基金supported by National Natural Science Foundation of China (Grant No.11171027)Program for Changjiang Scholars and Innovative Research Team in University of China
文摘Let L be a one-to-one operator of type w having a bounded H∞ functional calculus and satisfying the k-Davies-Gaffney estimates with k C N. In this paper, the authors introduce the Hardy space HPL(Rn) with p ∈(0, 1] associated with L in terms of square functions defined via {e-t2kL}t〉O and establish their molecular and generalized square function characterizations. Typical examples of such operators include the 2k-order divergence form homogeneous elliptic operator L1 with complex bounded measurable coefficients and the 2k-order Schr6dinger type operator L2 := (-△)k + Vk, where A is the Laplacian and 0≤V C Llkoc(Rn). Moreover, as an application, for i E {1, 2}, the authors prove that the associated Riesz transform Vk(Li-1/2) p n HP(Rn) for @ (n/(n + k), 1] and establish the Riesz transform characterizations is bounded from HLI(IR ) to p of HPL1(]Rn) for p C (rn/(n + kr), 1] if {e-tL1 }t〉o satisfies the Lr - L2 k-off-diagonal estimates with r C (1, 2]. These results when k := I and L := L1 are known.
基金supported by National Natural Science Foundation of China (Grant No. 10871025)Program for Changjiang Scholars and Innovative Research Team in Universities of China
文摘Let L be a linear operator in L^2(R^n) and generate an analytic semigroup {e^-tL}t≥0 with kernel satisfying an upper bound estimate of Poisson type, whose decay is measured by θ(L) ∈ (0, ∞). Let 4) be a positive, continuous and strictly increasing function on (0, ∞), which is of strictly critical lower type pФ (n/(n + θ(L)), 1]. Denote by HФ, L(R^n) the Orlicz-Hardy space introduced in Jiang, Yang and Zhou's paper in 2009. If Ф is additionally of upper type 1 and subadditive, the authors then show that the Littlewood-Paley g-function gL maps HФ, L(R^n) continuously into LФ(R^n) and, moreover, the authors characterize HФ, L(R^n) in terms of the Littlewood-Paley gλ^*-function with λ ∈ (n(2/pФ + 1), ∞). If Ф is further slightly strengthened to be concave, the authors show that a generalized Riesz transform associated with L is bounded from HФ, L(R^n) to the Orlicz space L^Ф(R^n) or the Orlicz-Hardy space HФ (R^n); moreover, the authors establish a new subtle molecular characterization of HФ, L (R^n) associated with L and, as applications, the authors then show that the corresponding fractional integral L^-γ for certain γ∈ E (0,∞) maps HФ, L(R^n) continuously into HФ, L(R^n), where Ф satisfies the same properties as Ф and is determined by Ф and λ and also that L has a bounded holomorphic functional calculus in HФ, L(R^n). All these results are new even when Ф(t) = t^p for all t ∈ (0, ∞) and p ∈ (n/(n + θ(L)), 1].
基金supported by National Natural Science Foundation of China(Grant No.11271092)Doctoral Fund of Ministry of Education of China(Grant No.20114410110001)
文摘In this paper,some properties of Hardy-Sobolev spaces are obtained. The multipliers on these spaces are defined,and our results show that the multiplier algebra is more complex than that on the classical Hardy spaces. In addition,the spectrum theorem is obtained for some special multiplier.