期刊文献+

Point Cloud Classification Network Based on Graph Convolution and Fusion Attention Mechanism

Point Cloud Classification Network Based on Graph Convolution and Fusion Attention Mechanism
下载PDF
导出
摘要 The classification of point cloud data is the key technology of point cloud data information acquisition and 3D reconstruction, which has a wide range of applications. However, the existing point cloud classification methods have some shortcomings when extracting point cloud features, such as insufficient extraction of local information and overlooking the information in other neighborhood features in the point cloud, and not focusing on the point cloud channel information and spatial information. To solve the above problems, a point cloud classification network based on graph convolution and fusion attention mechanism is proposed to achieve more accurate classification results. Firstly, the point cloud is regarded as a node on the graph, the k-nearest neighbor algorithm is used to compose the graph and the information between points is dynamically captured by stacking multiple graph convolution layers;then, with the assistance of 2D experience of attention mechanism, an attention mechanism which has the capability to integrate more attention to point cloud spatial and channel information is introduced to increase the feature information of point cloud, aggregate local useful features and suppress useless features. Through the classification experiments on ModelNet40 dataset, the experimental results show that compared with PointNet network without considering the local feature information of the point cloud, the average classification accuracy of the proposed model has a 4.4% improvement and the overall classification accuracy has a 4.4% improvement. Compared with other networks, the classification accuracy of the proposed model has also been improved. The classification of point cloud data is the key technology of point cloud data information acquisition and 3D reconstruction, which has a wide range of applications. However, the existing point cloud classification methods have some shortcomings when extracting point cloud features, such as insufficient extraction of local information and overlooking the information in other neighborhood features in the point cloud, and not focusing on the point cloud channel information and spatial information. To solve the above problems, a point cloud classification network based on graph convolution and fusion attention mechanism is proposed to achieve more accurate classification results. Firstly, the point cloud is regarded as a node on the graph, the k-nearest neighbor algorithm is used to compose the graph and the information between points is dynamically captured by stacking multiple graph convolution layers;then, with the assistance of 2D experience of attention mechanism, an attention mechanism which has the capability to integrate more attention to point cloud spatial and channel information is introduced to increase the feature information of point cloud, aggregate local useful features and suppress useless features. Through the classification experiments on ModelNet40 dataset, the experimental results show that compared with PointNet network without considering the local feature information of the point cloud, the average classification accuracy of the proposed model has a 4.4% improvement and the overall classification accuracy has a 4.4% improvement. Compared with other networks, the classification accuracy of the proposed model has also been improved.
作者 Tengteng Song Zhao Li Zhenguo Liu Yizhi He Tengteng Song;Zhao Li;Zhenguo Liu;Yizhi He(School of Computer Science and Technology, Shandong University of Technology, Zibo, China)
出处 《Journal of Computer and Communications》 2022年第9期81-95,共15页 电脑和通信(英文)
关键词 Graph Convolution Neural Network Attention Mechanism Modelnet40 Point Cloud Classification Graph Convolution Neural Network Attention Mechanism Modelnet40 Point Cloud Classification
  • 相关文献

参考文献8

二级参考文献49

共引文献394

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部