期刊文献+

深度学习在点云分类中的研究综述 被引量:19

Review of Deep Learning in Point Cloud Classification
下载PDF
导出
摘要 点云数据被广泛用于多种三维场景,深度学习凭借提取特征自动化、泛化能力强等优势在三维点云的应用领域快速发展,逐渐成为点云分类的主流研究方法。根据提取方式的不同,将现有算法归纳为传统方法以及深度学习算法。着重介绍基于深度学习的代表性方法和最新研究,总结其基本思想以及优缺点,对比分析主要方法的实验结果;展望深度学习在点云分类领域的未来工作以及研究发展方向。 Deep learning has developed rapidly in the application field of 3D point clouds with the advantages of automatic feature extraction and strong generalization ability.It has gradually become the mainstream research method of point cloud classification.According to the different extraction methods,the existing algorithms are summarized into traditional methods and deep learning algorithms.This paper emphasizes the introduction of representative methods and the latest research based on deep learning,summarizes its basic ideas,advantages and disadvantages.It compares and analyzes the experimental results of the main methods.Finally,it looks forward to the future work and research development of deep learning in the field of point cloud classification.
作者 王文曦 李乐林 WANG Wenxi;LI Lelin(School of Resource Environment and Safety Engineering,Hunan University of Science and Technology,Xiangtan,Hunan 411201,China;Hunan Provincial Key Laboratory of Geo-Information Engineering in Surveying,Mapping and Remote Sensing,Hunan University of Science and Technology,Xiangtan,Hunan 411201,China)
出处 《计算机工程与应用》 CSCD 北大核心 2022年第1期26-40,共15页 Computer Engineering and Applications
基金 国家自然科学基金(41401497) 湖南省科技计划重点研发项目(2015GK3027) 湖南省自然科学基金(2018JJ3158)。
关键词 图像处理 点云分类 深度学习 特征提取 卷积神经网络 image processing point cloud classification deep learning feature extraction convolutional neural network
  • 相关文献

参考文献8

二级参考文献60

  • 1MONGUS D, ALIK B. Parameter free Ground Filtering of I.iDAR Data for Automatic DTM Generation[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2012, 67 (1):1-12. 被引量:1
  • 2MUNOZ D, BAGNELL J A, et al. Contextual Classification with Functional Max-Margin Markov Networks [C] // Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Miami:IEEE, 2009:975-982. 被引量:1
  • 3ZHANG J X, LIN X G. Object based Classification of Urban Airborne LiDAR Point Clouds with Multiple Echoes using SVM[C] // Proceedings of ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences. Melbourne:[s. n. ], 2012: 248-253. 被引量:1
  • 4NIEMEYER J, WEGNER J D, MALLET C, et al. Conditional Random Fields for Urban Scene Classification with Full Waveform LiDAR Data [M]. Photogrammetric Image Analysis. Berlin:Springer, 2011: 233-244. 被引量:1
  • 5CHEHATA N, GUO L. Airborne LiDAR Feature Selec- tion for Urban Classification Using Random Forests [C] // Proceedings of Laser Scanning 2009. Paris : IAPRS, 1999 :207-212. 被引量:1
  • 6MALLET C, BRETAR F. Relevance Assessment of Full waveform LiDAR Data for Urban Area Classification[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2011, 66(6): 71-84. 被引量:1
  • 7HUANG Xianfeng, SOHN G. A Competition Based Roof Detection Algorithm from Airborne LiDAR Data [J]. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2008, 37 (3): 319-324. 被引量:1
  • 8WAGNER W, HOLLAUS M. 3D Vegetation Mapping Using Small-footprint Full-waveform Airborne Laser Scanners [J]. International Journal of Remote Sensing, 2008, 29(5): 1433-1452. 被引量:1
  • 9LODHA S K, FITZPATRICK D M, et ah Aerial LiDAR Data Classification Using Expectation-Maximization [C]//Proceedings of the SPIE Conference on Vision Geometry. [S. l.]:SPIE, 2007: 1-11. 被引量:1
  • 10KIM H B, SOHN G. 3D Classification of Power-line Scene from Airborne Laser Scanning Data Using Random Forests[C] // Proceedings of IAPRS. Saint-Mande: [s. n.], 2010:207 -212. 被引量:1

共引文献227

同被引文献90

引证文献19

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部