摘要
The results obtained from the characterization of a copper deposit on indium doped tin oxide (ITO), inked with natural dye extracted from the Lactarius indigo fungus, for use in Gratzel type solar cells are reported. An electrolyte composed of 0.1 M HNO<sub>3</sub> and 0.5 M CuSO<sub>4</sub> was used, this solution was prepared for copper deposits on the ITO. Cyclic voltammetry was performed at different scan rates to obtain the reduction zone for deposition between potentials of ?100 to ?500 mV. The dye was obtained from the indigo Lactarius fungus from maceration, once the inked deposits were obtained, characterizations were performed, the initial test was to obtain the Ultraviolet-Visible (UV-visible) of the pure dye, and later the same test was performed on the inked oxide. Electrochemical Impedance Spectroscopy (EIS) was performed on the samples, as well as Infrared Spectroscopy (FTIR) and Scanning Electron Microscopy (SEM), to characterize the material properties for its application.
The results obtained from the characterization of a copper deposit on indium doped tin oxide (ITO), inked with natural dye extracted from the Lactarius indigo fungus, for use in Gratzel type solar cells are reported. An electrolyte composed of 0.1 M HNO<sub>3</sub> and 0.5 M CuSO<sub>4</sub> was used, this solution was prepared for copper deposits on the ITO. Cyclic voltammetry was performed at different scan rates to obtain the reduction zone for deposition between potentials of ?100 to ?500 mV. The dye was obtained from the indigo Lactarius fungus from maceration, once the inked deposits were obtained, characterizations were performed, the initial test was to obtain the Ultraviolet-Visible (UV-visible) of the pure dye, and later the same test was performed on the inked oxide. Electrochemical Impedance Spectroscopy (EIS) was performed on the samples, as well as Infrared Spectroscopy (FTIR) and Scanning Electron Microscopy (SEM), to characterize the material properties for its application.