摘要
Electrocatalytic ammonia oxidation reaction(EAOR)provides an ideal solution for on-board hydrogen supply for fuel cells,while the lack of efficient and durable EAOR catalysts has been a long-standing obstacle for its practical application.Herein,we reported that the defect engineering via in-situ electrochemically introducing oxygen vacancies(Vo)not only turns the inactive CuO into efficient EAOR catalyst but also achieves a high stability of over 400 h at a high current density of~200 mA·cm^(−2).Theoretical simulation reveals that the presence of Vo on the CuO surface induces a remarkable upshift of the d-band center of active Cu site closer to the Fermi level,which significantly stabilizes the reaction intermediates(*NHx)and efficiently oxidizes NH3 into N2.This Vo-modulated CuO shows a different catalytic mechanism from that on the conventional Pt-based catalysts,paving a new avenue to develop inexpensive,efficient,and robust catalysts,not limited to EAOR.
基金
This work was supported by Westlake Education Foundation.