期刊文献+

The Effect of Graphene/Ag Nanoparticles Addition on the Performances of Organic Solar Cells

The Effect of Graphene/Ag Nanoparticles Addition on the Performances of Organic Solar Cells
下载PDF
导出
摘要 Graphene/Ag nanoparticles (GAg) were fabricated via a facile method, employing graphite oxide as a precursor of graphene sheet (GNS), AgNO3 as a precursor of Ag nanoparticles, and sodium citrate as a reducing and stabilizing agent. We synthesized three kinds of GAg as GAg-1, GAg-2 and GAg-3. We introduced high electron mobility GAg into the active layer of polymer solar cell. The cell structure was ITO/PEDOT:PSS/P3HT:PCBM:GAg/Ca/Al. The weight ratio of P3HT:PCBM:GAg of active layer is 1:1:0.01. We study the effect of GAg addition on the photovoltaic performance. We use the UV-Vis, SPM, FE-SEM and solar simulator to measure the absorbance, roughness, surface morphology, and power conversion efficiency (PCE), respectively. From these results, we found that the fill factor (FF) and PCE of the cells with GNS or GAg are always higher than those of cell without GNS or GAg. The cell with GAg-2 had the highest short circuit current density (Jsc) of 8.56 mA/cm2, an increase of 20.2%, the highest fill factor (FF) of 0.56, an increase of 14.3% and the highest PCE of 2.78%. This is a 24.7% increase in efficiency compared to the cell without GNS or GAg. These improvements were due to the high carrier mobility of grapheme. Graphene/Ag nanoparticles (GAg) were fabricated via a facile method, employing graphite oxide as a precursor of graphene sheet (GNS), AgNO3 as a precursor of Ag nanoparticles, and sodium citrate as a reducing and stabilizing agent. We synthesized three kinds of GAg as GAg-1, GAg-2 and GAg-3. We introduced high electron mobility GAg into the active layer of polymer solar cell. The cell structure was ITO/PEDOT:PSS/P3HT:PCBM:GAg/Ca/Al. The weight ratio of P3HT:PCBM:GAg of active layer is 1:1:0.01. We study the effect of GAg addition on the photovoltaic performance. We use the UV-Vis, SPM, FE-SEM and solar simulator to measure the absorbance, roughness, surface morphology, and power conversion efficiency (PCE), respectively. From these results, we found that the fill factor (FF) and PCE of the cells with GNS or GAg are always higher than those of cell without GNS or GAg. The cell with GAg-2 had the highest short circuit current density (Jsc) of 8.56 mA/cm2, an increase of 20.2%, the highest fill factor (FF) of 0.56, an increase of 14.3% and the highest PCE of 2.78%. This is a 24.7% increase in efficiency compared to the cell without GNS or GAg. These improvements were due to the high carrier mobility of grapheme.
作者 Cheng Fang Ou
出处 《Journal of Materials Science and Chemical Engineering》 2015年第12期30-35,共6页 材料科学与化学工程(英文)
关键词 GRAPHENE NANOPARTICLE Polymer Solar Cell Power CONVERSION Efficiency Graphene Nanoparticle Polymer Solar Cell Power Conversion Efficiency
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部