摘要
We review the formulation of graphene’s massless Dirac equation, under the chiral electromagnetism approach, hopefully demystifying the material’s unusual chiral, relativistic, effective theory. In Dirac’s theory, many authors replace the speed of light by the Fermi velocity, in this paper we deduce that in graphene the Fermi velocity is obtained from the connection between the electromagnetic chirality and the fine structure constant when the electric wave E is quasi parallel to the magnetic wave H. With this approach we can consider the properties of electric circuits involving graphene or Weyl semimetals. The existence of the induced chiral magnetic current in a graphene subjected to magnetic field causes an interesting and unusual behavior of such circuits. We discuss an explicit example of a circuit involving the current generation in a “chiral battery”. The special properties of this circuit may be utilized for creating “chiral electronic” devices.
We review the formulation of graphene’s massless Dirac equation, under the chiral electromagnetism approach, hopefully demystifying the material’s unusual chiral, relativistic, effective theory. In Dirac’s theory, many authors replace the speed of light by the Fermi velocity, in this paper we deduce that in graphene the Fermi velocity is obtained from the connection between the electromagnetic chirality and the fine structure constant when the electric wave E is quasi parallel to the magnetic wave H. With this approach we can consider the properties of electric circuits involving graphene or Weyl semimetals. The existence of the induced chiral magnetic current in a graphene subjected to magnetic field causes an interesting and unusual behavior of such circuits. We discuss an explicit example of a circuit involving the current generation in a “chiral battery”. The special properties of this circuit may be utilized for creating “chiral electronic” devices.