摘要
DNA electrophoresis gel is an important biologically experimental technique and DNA sequencing can be defined by it. Traditionally, it is time consuming for biologists to exam the gel images by their eyes and often has human errors during the process. Therefore, automatic analysis of the gel image could provide more information that is usually ignored by human expert. However, basic tasks such as the identification of lanes in a gel image, easily done by human experts, emerge as problems that may be difficult to be executed automatically. In this paper, we design an automatic procedure to analyze DNA gel images using various image processing algorithms. Firstly, we employ an enhanced fuzzy c-means algorithm to extract the useful information from DNA gel images and exclude the undesired background. Then, Gaussian function is utilized to estimate the location of each lane of A, T, C, and G on the gels images automatically. Finally, the location of each band on the gel image can be detected accurately by tracing lanes, renewing lost bands, and eliminating repetitive bands.
DNA electrophoresis gel is an important biologically experimental technique and DNA sequencing can be defined by it. Traditionally, it is time consuming for biologists to exam the gel images by their eyes and often has human errors during the process. Therefore, automatic analysis of the gel image could provide more information that is usually ignored by human expert. However, basic tasks such as the identification of lanes in a gel image, easily done by human experts, emerge as problems that may be difficult to be executed automatically. In this paper, we design an automatic procedure to analyze DNA gel images using various image processing algorithms. Firstly, we employ an enhanced fuzzy c-means algorithm to extract the useful information from DNA gel images and exclude the undesired background. Then, Gaussian function is utilized to estimate the location of each lane of A, T, C, and G on the gels images automatically. Finally, the location of each band on the gel image can be detected accurately by tracing lanes, renewing lost bands, and eliminating repetitive bands.