期刊文献+

Effects of Planting Date on Winter Canola Growth and Yield in the Southwestern U.S. 被引量:2

Effects of Planting Date on Winter Canola Growth and Yield in the Southwestern U.S.
下载PDF
导出
摘要 Canola (Brassica napus L.) has potential to become alternative cash crop (healthy oil for human and meals for animal uses) with tremendous rotational benefits in the Southwestern U.S., a region dominated by cereal-fallow cropping systems. However, information on optimum planting date for its successful production is limited. Field experiments were conducted in 2011-12 and 2012-13 seasons under irrigation condition to study the response of canola growth and yield to planting dates at Clovis, NM. Three planting dates (mid-September, late-September and early-October) and four canola varieties (early flowering: DKW41-10 and DKW46-15;medium flowering: Riley and Wichita) are studied. Fall plant stand density is significantly higher for early-October than mid- and late-September plantings. However, a ratio of fall to spring plant stand density indicates a greater reduction in spring plant stand density with early-October (25%) and mid-September (19%) than late-September (7%). Vegetative (by 13 days) and flowering (by 7 days) duration phases are significantly shortened with delay in planting. The decline in aboveground dry matter (DM) due to delayed planting resulted in significant seed yield reduction in both 2011-12 (26%) and in 2012-13 (8%) when early-October and mid-September plantings were compared. There was a positive relationship between final DM and canola seed yield, accounting for 84 and 34% variation for 2011-12 and 2012-13 seasons, respectively with the 2011-12 environmental conditions being conducive for genetically controlled variation in DM production to be more apparent and strong in explaining the variation in seed yield among varieties. Medium-flowering varieties produced higher DM (9741 vs. 8371 Kg&#8226ha<sup>-1</sup>) and seed yield (2785 vs. 2035 Kg&#8226ha<sup>-1</sup>) than early-flowering varieties. In addition to seed yield, DM can be used as an indirect selection criterion for seed yield in variety selection and appropriate planting dates including a guarantee for high crop residues (~75% of t Canola (Brassica napus L.) has potential to become alternative cash crop (healthy oil for human and meals for animal uses) with tremendous rotational benefits in the Southwestern U.S., a region dominated by cereal-fallow cropping systems. However, information on optimum planting date for its successful production is limited. Field experiments were conducted in 2011-12 and 2012-13 seasons under irrigation condition to study the response of canola growth and yield to planting dates at Clovis, NM. Three planting dates (mid-September, late-September and early-October) and four canola varieties (early flowering: DKW41-10 and DKW46-15;medium flowering: Riley and Wichita) are studied. Fall plant stand density is significantly higher for early-October than mid- and late-September plantings. However, a ratio of fall to spring plant stand density indicates a greater reduction in spring plant stand density with early-October (25%) and mid-September (19%) than late-September (7%). Vegetative (by 13 days) and flowering (by 7 days) duration phases are significantly shortened with delay in planting. The decline in aboveground dry matter (DM) due to delayed planting resulted in significant seed yield reduction in both 2011-12 (26%) and in 2012-13 (8%) when early-October and mid-September plantings were compared. There was a positive relationship between final DM and canola seed yield, accounting for 84 and 34% variation for 2011-12 and 2012-13 seasons, respectively with the 2011-12 environmental conditions being conducive for genetically controlled variation in DM production to be more apparent and strong in explaining the variation in seed yield among varieties. Medium-flowering varieties produced higher DM (9741 vs. 8371 Kg&#8226ha<sup>-1</sup>) and seed yield (2785 vs. 2035 Kg&#8226ha<sup>-1</sup>) than early-flowering varieties. In addition to seed yield, DM can be used as an indirect selection criterion for seed yield in variety selection and appropriate planting dates including a guarantee for high crop residues (~75% of t
作者 Sultan H. Begna Sangamesh V. Angadi Sultan H. Begna;Sangamesh V. Angadi(New Mexico State University, Agricultural Science Center, Clovis, NM, USA)
出处 《American Journal of Plant Sciences》 2016年第1期201-217,共17页 美国植物学期刊(英文)
关键词 Alternative Potential Crop Planting Dates Yield Diversity Southwestern U.S. Alternative Potential Crop Planting Dates Yield Diversity Southwestern U.S.
  • 相关文献

同被引文献13

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部