期刊文献+

Artificial Logging or Natural Growth

Artificial Logging or Natural Growth
下载PDF
导出
摘要 Global climate change makes forestry carbon sequestration a hot issue. In order to improve the comprehensive benefits of forest management, this paper studies the carbon accounting problem, and uses the forest stock conversion factor method to create a carbon sequestration accounting model based on the reserve transformation method. Then, the HWP carbon sequestration accounting algorithm is obtained after the improvement of the reserve change method and the atmospheric flow method with the HWP half-life as a bridge. Based on the ecological and economic benefits, a multi-objective and multi-attribute decision-making model for forest management plan is constructed, and the optimal strategy of stand structure based on selective cutting is proposed. Finally, the entropy weight TOPSIS method is used to quantitatively analyze the comprehensive benefit value and provide suggestions for forestry departments. To verify the model, we chose the Greater Khingan Mountains forest region as the research site. Through successive iterations of CSAM, we calculate that the forest will absorb 534 million tons of live forest and forest products in 100 years. From the stand structure of the forest area, when the selected cutting intensity is 20% and the selected cutting cycle is 10.7 years, the comprehensive benefit value of the Greater Khingan Mountains is the highest. Global climate change makes forestry carbon sequestration a hot issue. In order to improve the comprehensive benefits of forest management, this paper studies the carbon accounting problem, and uses the forest stock conversion factor method to create a carbon sequestration accounting model based on the reserve transformation method. Then, the HWP carbon sequestration accounting algorithm is obtained after the improvement of the reserve change method and the atmospheric flow method with the HWP half-life as a bridge. Based on the ecological and economic benefits, a multi-objective and multi-attribute decision-making model for forest management plan is constructed, and the optimal strategy of stand structure based on selective cutting is proposed. Finally, the entropy weight TOPSIS method is used to quantitatively analyze the comprehensive benefit value and provide suggestions for forestry departments. To verify the model, we chose the Greater Khingan Mountains forest region as the research site. Through successive iterations of CSAM, we calculate that the forest will absorb 534 million tons of live forest and forest products in 100 years. From the stand structure of the forest area, when the selected cutting intensity is 20% and the selected cutting cycle is 10.7 years, the comprehensive benefit value of the Greater Khingan Mountains is the highest.
作者 Ziyi Wang Jiaxin Lu Fuxing Chu Xiangrui Li Ziyi Wang;Jiaxin Lu;Fuxing Chu;Xiangrui Li(Qufu Normal University, Shandong, China)
机构地区 Qufu Normal University
出处 《Open Journal of Applied Sciences》 CAS 2022年第7期1184-1209,共26页 应用科学(英文)
关键词 Forest Management Strategy Selective Cutting Intensity Selective Cutting Cycle Optimal Decision Model Entropy Weight TOPSIS Method Forest Management Strategy Selective Cutting Intensity Selective Cutting Cycle Optimal Decision Model Entropy Weight TOPSIS Method
  • 相关文献

参考文献7

二级参考文献76

共引文献106

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部