期刊文献+

Quantum Inverse Measurement Theory Contributing to the Birth of Interpretation System of Quantum Mechanics of Local-Realism and Determinism

Quantum Inverse Measurement Theory Contributing to the Birth of Interpretation System of Quantum Mechanics of Local-Realism and Determinism
下载PDF
导出
摘要 The existing interpretation of quantum mechanics is contrary to common sense. The existing quantum mechanical interpretation schemes are puzzling. The confusing theory is unconvincing, and needs to be amended and completed. The successful interpretation program of quantum mechanics of local-realism and determinism is undoubtedly the most attractive. Preparing the interpretation program deserves to be chosen as a research goal. It is a very good premise to believe that an object particle consists of light-knot of monochromatic waves. According to this premise, the erroneous recognition about “superposition principle, wave-particle duality and uncertainty principle” can be corrected. Under this premise, above research goal is achieved by establishing, applying quantum mechanics inverse measurement theory, adhering to the principle that there must be a complete empirical chain in the derivation process of experimental conclusion, and using the side effect caused by accompanying-light to explain the diffraction experiment of object particles. Electron secondarily diffraction and other experiments directly prove that there is the measurement (observation) which may not destroy quantum coherence. The diffraction experiments of all kinds of particles show that the Keeping and playing of the coherence of moving particles in the vacuum have nothing to do with their previous experience. These are the existing experiments, to be found, that support the theory of quantum inverse measurements. The verification experiment of quantum inverse measurement is designed. The absolute superiorities of quantum inverse measurement and the new view of measurement of quantum mechanics are listed. These superiorities are that: it has the characteristics of local-realism and determinism;it is not contrary to common sense and there is no confusing place;it can predict several phenomena that cannot be predicted by other theories. A solid theoretical foundation has been laid for “correctly understanding the microscopic world” and esta The existing interpretation of quantum mechanics is contrary to common sense. The existing quantum mechanical interpretation schemes are puzzling. The confusing theory is unconvincing, and needs to be amended and completed. The successful interpretation program of quantum mechanics of local-realism and determinism is undoubtedly the most attractive. Preparing the interpretation program deserves to be chosen as a research goal. It is a very good premise to believe that an object particle consists of light-knot of monochromatic waves. According to this premise, the erroneous recognition about “superposition principle, wave-particle duality and uncertainty principle” can be corrected. Under this premise, above research goal is achieved by establishing, applying quantum mechanics inverse measurement theory, adhering to the principle that there must be a complete empirical chain in the derivation process of experimental conclusion, and using the side effect caused by accompanying-light to explain the diffraction experiment of object particles. Electron secondarily diffraction and other experiments directly prove that there is the measurement (observation) which may not destroy quantum coherence. The diffraction experiments of all kinds of particles show that the Keeping and playing of the coherence of moving particles in the vacuum have nothing to do with their previous experience. These are the existing experiments, to be found, that support the theory of quantum inverse measurements. The verification experiment of quantum inverse measurement is designed. The absolute superiorities of quantum inverse measurement and the new view of measurement of quantum mechanics are listed. These superiorities are that: it has the characteristics of local-realism and determinism;it is not contrary to common sense and there is no confusing place;it can predict several phenomena that cannot be predicted by other theories. A solid theoretical foundation has been laid for “correctly understanding the microscopic world” and esta
作者 Runsheng Tu
出处 《Journal of Modern Physics》 2017年第8期1398-1469,共72页 现代物理(英文)
关键词 QUANTUM INVERSE MEASUREMENT LOCAL REALISM DETERMINISM QUANTUM Entanglement Tu’s MEASUREMENT View of QUANTUM Mechanics Light-Knot Electronic Structure Model Quantum Inverse Measurement Local Realism Determinism Quantum Entanglement Tu’s Measurement View of Quantum Mechanics Light-Knot Electronic Structure Model
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部