摘要
Recently, several approaches have been proposed to discover the causality of the time-independent or fixed causal model. However, in many realistic applications, especially in economics and neuroscience, causality among variables might be time-varying. A time-varying linear causal model with non-Gaussian noise is considered and the estimation of the causal model from observational data is focused. Firstly, an independent component analysis(ICA) based two stage method is proposed to estimate the time-varying causal coefficients. It shows that, under appropriate assumptions, the time varying coefficients in the proposed model can be estimated by the proposed approach, and results of experiment on artificial data show the effectiveness of the proposed approach. And then, the granger causality test is used to ascertain the causal direction among the variables. Finally, the new approach is applied to the real stock data to identify the causality among three stock indices and the result is consistent with common sense.
Recently, several approaches have been proposed to discover the causality of the time-independent or fixed causal model. However, in many realistic applications, especially in economics and neuroscience, causality among variables might be time-varying. A time-varying linear causal model with non-Gaussian noise is considered and the estimation of the causal model from observational data is focused. Firstly, an independent component analysis(ICA) based two stage method is proposed to estimate the time-varying causal coefficients. It shows that, under appropriate assumptions, the time varying coefficients in the proposed model can be estimated by the proposed approach, and results of experiment on artificial data show the effectiveness of the proposed approach. And then, the granger causality test is used to ascertain the causal direction among the variables. Finally, the new approach is applied to the real stock data to identify the causality among three stock indices and the result is consistent with common sense.
基金
Sponsored by the National Natural Science Foundation of China(Grant No.61573014)