期刊文献+

Parametric Dirac Delta to Simplify the Solution of Linear and Nonlinear Problems with an Impulsive Forcing Function

Parametric Dirac Delta to Simplify the Solution of Linear and Nonlinear Problems with an Impulsive Forcing Function
下载PDF
导出
摘要 The Laplace transform is a very useful tool for the solution of problems involving an impulsive excitation, usually represented by the Dirac delta, but it does not work in nonlinear problems. In contrast with this, the parametric representation of the Dirac delta presented here works both in linear and nonlinear problems. Furthermore, the parametric representation converts the differential equation of a problem with an impulsive excitation into two equations: the first equation referring to the impulse instant (absent in the conventional solution) and the second equation referring to post-impulse time. The impulse instant equation contains fewer terms than the original equation and the impulse is represented by a constant, just as in the Laplace transform, the post-impulse equation is homogeneous. Thus, the solution of the parametric equations is considerably simpler than the solution of the original equation. The parametric solution, involving the equations of both the dependent and independent variables in terms of the parameter, is readily reconverted into the usual equation in terms of the dependent and independent variables only. This parametric representation may be taught at an earlier stage because the principle on which it is based is easily visualized geometrically and because it is only necessary to have a knowledge of elementary calculus to understand it and use it. The Laplace transform is a very useful tool for the solution of problems involving an impulsive excitation, usually represented by the Dirac delta, but it does not work in nonlinear problems. In contrast with this, the parametric representation of the Dirac delta presented here works both in linear and nonlinear problems. Furthermore, the parametric representation converts the differential equation of a problem with an impulsive excitation into two equations: the first equation referring to the impulse instant (absent in the conventional solution) and the second equation referring to post-impulse time. The impulse instant equation contains fewer terms than the original equation and the impulse is represented by a constant, just as in the Laplace transform, the post-impulse equation is homogeneous. Thus, the solution of the parametric equations is considerably simpler than the solution of the original equation. The parametric solution, involving the equations of both the dependent and independent variables in terms of the parameter, is readily reconverted into the usual equation in terms of the dependent and independent variables only. This parametric representation may be taught at an earlier stage because the principle on which it is based is easily visualized geometrically and because it is only necessary to have a knowledge of elementary calculus to understand it and use it.
出处 《Journal of Applied Mathematics and Physics》 2013年第7期16-25,共10页 应用数学与应用物理(英文)
关键词 DIRAC DELTA PARAMETRIC Representation Nonlinear Differential Equations IMPULSIVE PROBLEMS Dirac Delta Parametric Representation Nonlinear Differential Equations Impulsive Problems
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部