摘要
For fatigue strength design and evaluation as well as for multiaxial fatigue tests analysis of welded structures, the stress concentration factor(SCF) at the weld must be known. In the present study, two common models of multiaxial fatigue tests, tube-plate(TP) model and tube-tube(TT) model are selected as the research objects. SCFs of the two models with various geometric parameters under pure bending and pure torsion loading have been investigated by conducting a series of three-dimensional(3 D) finite element models based on linear elasticity theory. The effect of weld width(w), plate thickness(t), weld toe notch radius(r), and reinforcement angle(θ) on SCF is assessed. The quadratic parametric equations based on t/r are proposed to predict SCFs of the two models, which reveal satisfactory accuracy.
For fatigue strength design and evaluation as well as for multiaxial fatigue tests analysis of welded structures, the stress concentration factor(SCF) at the weld must be known. In the present study, two common models of multiaxial fatigue tests, tube-plate(TP) model and tube-tube(TT) model are selected as the research objects. SCFs of the two models with various geometric parameters under pure bending and pure torsion loading have been investigated by conducting a series of three-dimensional(3 D) finite element models based on linear elasticity theory. The effect of weld width(w), plate thickness(t), weld toe notch radius(r), and reinforcement angle(θ) on SCF is assessed. The quadratic parametric equations based on t/r are proposed to predict SCFs of the two models, which reveal satisfactory accuracy.
作者
Hu Xin
Yan Renjun
Shen Wei
Hu Yaoyu
He Feng
胡鑫;严仁军;谌伟;胡耀愚;何丰(School of Transportation,Wuhan University of Technology;Key Laboratory of High Performance Ship Technology of Ministry of Education;Hubei Hang Da Technology Co.,Ltd.)
基金
supported by the National Natural Science Foundation of China(Grant No.51609185)