期刊文献+

Theoretical Analysis of Simulating the Locked-In Stress in Rock Pore by Thermal Expansion of Hard Rubber

Theoretical Analysis of Simulating the Locked-In Stress in Rock Pore by Thermal Expansion of Hard Rubber
下载PDF
导出
摘要 Rocks are composed of mineral particles and micropores between mineral which has a great influence on the mechanical properties of rocks. In this paper, based on the theory of locked-in stress developed by academician Chen Zongji, the locked-in stress problem in underground rock is simulated by the thermal expansion of hard rubber particles. The pore inclusion in rock is assumed to be uniformly distributed spherical cavities. Using the thermal stress theory, the stress of rock with a spherical pore inclusion is equivalent to the thermal stress generated by the spherical hard rubber inclusion. The elastic theory formula of the temperature increment and the equivalent pore pressure of the spherical hard rubber inclusion is derived. The numerical simulation of the rock mass model with a spherical hard rubber inclusion is carried out and compared to the theoretical calculation results<span lang="EN-US" style="font-family:;" minion="" pro="" capt",serif;font-size:10pt;mso-fareast-font-family:宋体;mso-bidi-font-family:"times="" new="" roman";mso-ansi-language:en-us;mso-fareast-language:zh-cn;mso-bidi-language:ar-sa;mso-bidi-font-weight:bold;"="">;</span><span lang="EN-US" style="font-family:;" minion="" pro="" capt",serif;font-size:10pt;mso-fareast-font-family:宋体;mso-bidi-font-family:"times="" new="" roman";mso-ansi-language:en-us;mso-fareast-language:en-us;mso-bidi-language:ar-sa;mso-bidi-font-weight:bold;"=""> the results show that they are consistent. The method proposed by this paper for simulating stress distribution in rock by thermal stress is reasonable and feasible</span><span lang="EN-US" style="font-family:;" minion="" pro="" capt",serif;font-size:10pt;mso-fareast-font-family:宋体;mso-bidi-font-family:"times="" new="" roman";mso-ansi-language:en-us;mso-fareast-language:zh-cn;mso-bidi-language:ar-sa;mso-bidi-font-weight:bold;"="">;</span><span lang="EN-US" style="font-family:;" minion="" pro="" capt",serif;font-size:10pt;mso-fareast-font-family:宋体;mso-bidi-font-family:"times="" new="" roman";mso-a Rocks are composed of mineral particles and micropores between mineral which has a great influence on the mechanical properties of rocks. In this paper, based on the theory of locked-in stress developed by academician Chen Zongji, the locked-in stress problem in underground rock is simulated by the thermal expansion of hard rubber particles. The pore inclusion in rock is assumed to be uniformly distributed spherical cavities. Using the thermal stress theory, the stress of rock with a spherical pore inclusion is equivalent to the thermal stress generated by the spherical hard rubber inclusion. The elastic theory formula of the temperature increment and the equivalent pore pressure of the spherical hard rubber inclusion is derived. The numerical simulation of the rock mass model with a spherical hard rubber inclusion is carried out and compared to the theoretical calculation results<span lang="EN-US" style="font-family:;" minion="" pro="" capt",serif;font-size:10pt;mso-fareast-font-family:宋体;mso-bidi-font-family:"times="" new="" roman";mso-ansi-language:en-us;mso-fareast-language:zh-cn;mso-bidi-language:ar-sa;mso-bidi-font-weight:bold;"="">;</span><span lang="EN-US" style="font-family:;" minion="" pro="" capt",serif;font-size:10pt;mso-fareast-font-family:宋体;mso-bidi-font-family:"times="" new="" roman";mso-ansi-language:en-us;mso-fareast-language:en-us;mso-bidi-language:ar-sa;mso-bidi-font-weight:bold;"=""> the results show that they are consistent. The method proposed by this paper for simulating stress distribution in rock by thermal stress is reasonable and feasible</span><span lang="EN-US" style="font-family:;" minion="" pro="" capt",serif;font-size:10pt;mso-fareast-font-family:宋体;mso-bidi-font-family:"times="" new="" roman";mso-ansi-language:en-us;mso-fareast-language:zh-cn;mso-bidi-language:ar-sa;mso-bidi-font-weight:bold;"="">;</span><span lang="EN-US" style="font-family:;" minion="" pro="" capt",serif;font-size:10pt;mso-fareast-font-family:宋体;mso-bidi-font-family:"times="" new="" roman";mso-a
作者 Lu Dong Hansheng Geng Hongfa Xu Yinhao Yang Lu Dong;Hansheng Geng;Hongfa Xu;Yinhao Yang(State Key Laboratory of Disaster Prevention and Mitigation of Explosion and Impact, National Defense Engineering College, Army Engineering University of PLA, Nanjing, China)
出处 《Open Journal of Civil Engineering》 2020年第2期83-92,共10页 土木工程期刊(英文)
关键词 Rock Pore Locked-In Stress Similar Simulation Rubber Particles Ther-mal Expansion Rock Pore Locked-In Stress Similar Simulation Rubber Particles Ther-mal Expansion
  • 相关文献

参考文献6

二级参考文献88

  • 1谢庆邦 黄思静 等.陕甘宁盆地中部气田奥陶系风化壳碳酸盐岩储层特征研究[J].天然气工业,1994,14:13-18. 被引量:1
  • 2黄思静 杨俊杰 等.表生和埋藏成岩作用的温压条件下,碳酸盐岩溶解过程的实验模拟.中国古大陆和大陆边缘沉积学[M].成都:四川科学技术出版社,1996.92-104. 被引量:1
  • 3王仁 熊祝华 黄文彬.塑性力学基础[M].北京:科学出版社,1989.. 被引量:2
  • 4刘斌,沈昆.流体包裹体热力学[M].北京:地质出版社,1992.47-90. 被引量:6
  • 5岳中琦.汶川地震成因的龙门山断裂带异常高压天然气体力源简述.岩石力学与工程动态,2009,2:45-50. 被引量:3
  • 6黄思静,中国古大陆和大陆边缘沉积学,1996年,92页 被引量:1
  • 7谢庆邦,天然气工业,1994年,14卷,增刊,13页 被引量:1
  • 8Klass M J,Transactions Gulf Coast Associationof Geological Societies,1981年,31卷,115页 被引量:1
  • 9蔡美峰.地应力及原位地应力测量[C]//王思敏.中国岩石力学与工程世纪成就.江苏:河海大学出版社,2004:485-515. 被引量:4
  • 10陈宗基. 中国岩石力学学科发展及工程应用[C]// 第四届国际岩石力学大会上的讲话. [S. l.]:[s. n.],2005:9-10. 被引量:1

共引文献241

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部