摘要
在本论文中,我们全面回顾了基于语言知识的神经机器翻译(Neural Machine Translation, NMT)方法,重点关注了如何将语言学特征和知识融入NMT系统中。首先,我们介绍了神经机器翻译的基本概念和发展背景,然后详细讨论了基于语言知识的神经机器翻译数据增强方面、翻译模型结构改进与外部语言知识的融合方面的各种方法。最后,我们总结了基于语言知识的神经机器翻译在实践中的优势与挑战,并展望了未来的研究方向。
在本论文中,我们全面回顾了基于语言知识的神经机器翻译(Neural Machine Translation, NMT)方法,重点关注了如何将语言学特征和知识融入NMT系统中。首先,我们介绍了神经机器翻译的基本概念和发展背景,然后详细讨论了基于语言知识的神经机器翻译数据增强方面、翻译模型结构改进与外部语言知识的融合方面的各种方法。最后,我们总结了基于语言知识的神经机器翻译在实践中的优势与挑战,并展望了未来的研究方向。
出处
《人工智能与机器人研究》
2023年第2期97-106,共10页
Artificial Intelligence and Robotics Research