摘要
该文研究一类交叉非线性反应扩散方程组,而交叉扩散项在不稳定时可以创造图灵模式。为了寻找一种简单有效的非线性交叉反应扩散系统的数值方法,本文提出了采用这种新的空间谱插值配点方法模拟了一些数值算例,其结果和理论上的吻合度较好,结果表明了该方法的有效性。
In this paper, we study a class of cross nonlinear reaction-diffusion equations whose cross diffusion terms can create Turing patterns when they are unstable. In order to find a simple and effective numerical method for nonlinear cross-reaction-diffusion systems, this paper presents a new spatial spectral interpolation method to simulate some numerical examples. The results agree well with the theory, and the results show that the method is effective.
出处
《应用数学进展》
2020年第9期1493-1507,共15页
Advances in Applied Mathematics
关键词
交叉反应扩散方程
图灵分叉条件
空间谱插值配点方法
数值解
Cross Reaction Diffusion Equation
Turing Branching Conditions
Spatial Spectral Interpolation Collocation Method
Numerical Solution