期刊文献+

一类拟线性常微分方程爆破解的存在性(英文) 被引量:2

Existence of Explosive Nonnegative Solutions for a Class of Quasilinear Ordinary Differential Equations
下载PDF
导出
摘要 本文得到了两点边值问题- (Φp(u′) )′ =λf(u(x) ) ;0 <x <1limx→ 0 +u(x) =∞ =limx→ 1 -u(x) ,非负解存在的必要条件和充分条件 ,这里λ >0是参数 。 In this paper, the necessary and sufficient conditions of the existence of nonnegative solutions for the two point boundary value problem -(Φ_p(u′))′=λf(u(x)); 0<x<1 (lim)x→0^+u(x)=∞=(lim)x→1^-u(x), is established, where λ>0 is a parameter and f is a smooth function.
出处 《南京师大学报(自然科学版)》 CAS CSCD 2004年第2期5-9,共5页 Journal of Nanjing Normal University(Natural Science Edition)
基金 SupportedbytheScienceFoundationofNanjingNormalUniversity ( 2 0 0 3SXXXGQ2B3 7)andtheScienceFoundationof2 11Engineering
关键词 拟线性常微分方程 爆破解 存在性 两点边值问题 explosive nonnegative solutions, two-point boundary value problems, existence
  • 相关文献

参考文献9

  • 1Anuradba V, Brown C, Shivaji R. Explosive nonnegative solutions to two point boundary value problems[J]. Nonlinear Anal, 1996,26(3) :613-630. 被引量:1
  • 2Wang Shinhwa. Existence and multiplicity of boundary blow-up nonnegative solutions to two-point boundary value problems [J]. Nonlinear Anal, 2000,42:139- 162. 被引量:2
  • 3Diaz G, Letelier R. Explosive solutions of quasilinear elliptic equations: existence and uniqueness[J]. Nonlinear Anal, 1993,20(3) :97-125. 被引量:1
  • 4Lazer A C, McKenna P J. On a problem of Bieberbach and Rademacher[J]. Nonlinear Anal, 1993,21(5) :327-335. 被引量:1
  • 5Lazer A C, McKenna PJ. On singular boundary value problems for the Monge- Ampere Operator[J]. J Math Anal Appl,1996,197:341-362. 被引量:1
  • 6Marcus M, Veron L. Uniqueness of solutions with blow-up at the boundary for a class of nonlinear qlliptic equation[J]. C R Acad Sci Paris, 1993,317: 559-563. 被引量:1
  • 7Pohozaev S L. The Dirichlet problem for the equation △u = u2 [ J ]. Dokl Akad SSSR, 1960, 134:769-772; (English translation:Sov Math, 1960, 1: 1143-1146). 被引量:1
  • 8Posteraro M R. On the solutions of the equation △u= eu blowing up on the boundary[ J]. C R Acad Sci Paris, 1996,322:445-450. 被引量:2
  • 9Bieberbach L. △u = eu und die automorphen Funktionen[J]. Math Ann, 1916,77:173-212. 被引量:1

共引文献1

同被引文献13

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部