期刊文献+

对多尺度边缘检测中边缘位移的研究 被引量:5

Research on Edge Shift in Case of Multi-scale Edge Detection
下载PDF
导出
摘要 多尺度边缘检测的任务之一是寻求噪声平滑与保持细节边缘的折中,现已出现了许多自适应多尺度边缘检测方法,但使用多尺度的边缘检测方法常常使得边缘发生位移.为了使得在大尺度下求取的边缘位置不变,提出了一种根据局部图象特点,在最大尺度下求取保持图象边缘点位置不变的多尺度自适应边缘检测方法,并首先证明了对于绝大多数边缘点,如果使用恰当的小波基,那么,对于常规边缘检测算子,在大尺度下,也能准确定位;然后,利用以小波函数为核函数的积分运算与求导数之间的关系以及小波分析的多尺度特性给出了一种自适应的、保持位置不变的图象边缘检测方法,最后用实验进行了验证. One of the main tasks in multi-scale edge detection is to seek the best compromising between removing noise and remaining fine edges. At present, many adaptive multi-scale edge detection algorithms have been developed. But there is one problem in these methods in that some detected edge points are moved actually from their exact positions. In order to obtain edge points as exactly as possible, in this paper, a new adaptive multi-scale edge detection method is developed, in which the edge positions are kept invariant to the most in the case of large scale. Moreover, firstly, it is proved that, within an apt scale range, with a special class of wavelet basis, the positions of edge points based on zero crossing of two order derivatives won't be changed after wavelet transform even with ordinary edge detection operator; secondly, according to the property of multi-scale analysis and the relation between differentiating and integration operation in which a wavelet function is taken as a kernel function, a multi-scale self-adaptive multi-scale edge detection algorithm was put forward in which the local maximum scale in that the positions of local edge points won't be changed is developed; finally, two group of experiments are carried out with different kinds of wavelet basis. The experiments show that, under the restriction that the specific edges should be kept as good as possible, the positions of edge will not be changed in large-scale case.
出处 《中国图象图形学报(A辑)》 CSCD 北大核心 2003年第11期1247-1253,共7页 Journal of Image and Graphics
关键词 计算机图象处理 多尺度边缘检测 小波变换 边缘位移 自适应算法 Multi-Scale edge detection, Wavelet transform, Edge displacement, Adaptive algorithm
  • 相关文献

参考文献2

二级参考文献2

  • 1钟义信,信息科学原理,1996年 被引量:1
  • 2谢维信,电子学报,1995年,13卷,5期,115页 被引量:1

共引文献5

同被引文献21

  • 1李艳敏,张恒,李孟超.基于小波的小尺寸物体的图像边缘提取方法[J].微计算机信息,2004,20(12):126-127. 被引量:15
  • 2赵志刚,管聪慧.基于多尺度边缘检测的自适应阈值小波图像降噪[J].仪器仪表学报,2007,28(2):288-292. 被引量:19
  • 3Ferraro M,Boccignone G.Image contrast enhancement via entropy production[J].Real-Time Imaging,2004,10(4):229-238. 被引量:1
  • 4Khellaf A,Beghdadi A,Dupoisot H.Entropic contrast enhancement[J].IEEE Trans on Medical Imaging,1991,10(4):589-592. 被引量:1
  • 5Cheng H D,Chen Y H,Sun Y.A novel fuzzy entropy approach to image enhancement and thresholding[J].Signal Processing,1999,75(3):277-301. 被引量:1
  • 6Fu J C,Lien H C,Wong S T C.Wavelet-based histogram equalization enhancement of gastric sonogram images[J].Computerized Medical Imaging and Graphics,2000,24(2):59-68. 被引量:1
  • 7Robin N S,Hee I H.Wavelet transform methods for object detection and recovery[J].IEEE Trans on Image Processing,1997,6(5):725-728. 被引量:1
  • 8Mallat S,Hwang W L.Singularity detection and processing with wavelets[J].IEEE Trans on Information Theory,1992,38(2):617-643. 被引量:1
  • 9Rioul O,Duhamel P.Fast algorithms for discrete and continuous wavelet transforms[J].IEEE Trans on Information Theory,1992,38(2):569-586. 被引量:1
  • 10[1]S.Mallat,S.Zhong.Characterization of Signals from Multiscale Edge.IEEE Trans.on PAMI.,1992,14(7):710-732. 被引量:1

引证文献5

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部