摘要
提出将模糊径向基函数神经网络(FRBFN)用于模糊数据的建模,并提出融和圆锥模糊向量的聚类方法和模糊线性回归的学习算法。仿真研究表明,FRBFN及其算法在模糊数据建模方面有一定的优势。
In this paper, a kind of Fuzzified Radial Basis Function Network(FRBFN) is proposed to (realize) modeling of fuzzy data. A new training algorithm combining the fuzzy clustering and fuzzy (linear) regression algorithms is also proposed. Simulation studies have been carried out to verify the (validity) and demonstrate the advantage of our approach.
出处
《模糊系统与数学》
CSCD
2004年第1期60-66,共7页
Fuzzy Systems and Mathematics
基金
国家自然科学基金资助项目(60274057)
国家自然青年科学基金资助项目(60204011)
关键词
模糊径向基函数神经网络
FRBFN
模糊数据建模
模糊线性回归
遗传算法
Fuzzy Neural Network
Fuzzy Linear Regression
Clustering for Fuzzy Vector Data
(Genetic) Algorithm
Modeling of Fuzzy Data