期刊文献+

独立分量分析在图像特征提取中的应用 被引量:2

APPLICATION OF INDEPENDENT COMPONENT ANALYSIS IN IMAGE FEATURES EXTRACTING
原文传递
导出
摘要 本文探讨了独立分量分析在图像特征提取方面的应用,对一组自然景色图像进行独立分量分析,结果产生一组具有空间、频域的局部性及局部的方向选择性的视觉滤波器,这组视觉滤波器输出的独立元就是图像的特征(图像中的边缘和线段)。利用此项技术,我们将无监督学习技术(独立分量分析)和有监督学习技术(支持向量机)相结合,提出了一种新的脸谱识别方法——基于独立分量分析和支持向量机的脸谱识别方法。利用ORL脸谱库进行脸谱识别实验以检验新方法的有效性。实验结果显示,新方法的识别率明显优于经典的特征脸方法。 In this paper, we researched application of Independent Component Analysis in images features extracting. Then we propose a new method for face recognition by combining Independent Component Analysis and Support Vector Machine. Independent Component Analysis extracted face features and Support Vector Machine classified faces. We then fulfill face recognition. By using ORL facedata, we compare classical method of Principal Component Analysis-based and our new method. The experiment results show the performance of our method is significantly superior to that of PCA-based method.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2004年第1期114-118,共5页 Pattern Recognition and Artificial Intelligence
基金 高校博士点学科专项基金(No.20020358033)
关键词 模式识别 图像特征提取 独立分量分析 支持向量机 图像合成 脸谱识别 Independent Component Analysis( ICA), Support Vector Machine(SVM), Principal Component Analysis( PCA) , Face Recognition
  • 相关文献

参考文献11

  • 1杨福生,洪波,唐庆玉.独立分量分析及其在生物医学工程中的应用[J].国外医学(生物医学工程分册),2000,23(3):129-134. 被引量:58
  • 2边肇棋 张学工.模式识别(第二版)[M].北京:清华大学出版社,2000.. 被引量:6
  • 3何振亚,杨绿溪,鲁子奕.非线性Infomax自组织算法的盲源分离机理[J].数据采集与处理,1998,13(4):303-305. 被引量:5
  • 4Hyvarinen A. Independent Comtxment Analysis: A Tutorial.http://www, cis. hut. fi/projects/ICA. 被引量:1
  • 5Bell A J, Sejnowski T J. The Independent Comtxments of Natural Scenes Are F2:lge Filters. Vision Research, 1997, 37(23): 3327-3338. 被引量:1
  • 6Bartlett M S, Martin H, Sejnowski T J. Face Image Analysis by Unsupervised Learning and Redundancy Reduction. Ph. D Dissertation, University of California San Diego and the Salk Institute, La Jolla, CA 92037, 1998. 被引量:1
  • 7Vapnik V N. The Nature of Statistical Lemming Theory. New York: Springer-Verlag, 1995. 被引量:1
  • 8Schoelkopf B, Burges C J C, Smola A J. Advances in Kernel Methods- Support Vector Learning. Cambridge, MA: MIT Press, 1999. 被引量:1
  • 9Bell A J, Sejnowski T J. An Information Maximization Approach to Blind Separation and Blind Deconvolution. Neural Computation, 1995, 7: 1129- 1159. 被引量:1
  • 10Platt J. Fast Training of Support Vector Machines Using Sequential Minimal Optimization. In: Sch61kopf B, Burges C J C, Smola A J, Eds. Advances in Kernel Methods -Support Vector Learning. Cambridge, MA: MIT Press, 1999, 185 208. 被引量:1

二级参考文献11

  • 1Hyvarinen A.Fast and robust fixed-point algorithm for independent component analysis[].IEEE Transactions on Neural Networks.1999 被引量:1
  • 2Amari SI,Cichocki AC.Adaptive blind signal processing-Neural network approaches[].Proceedings of the IEEE.1998 被引量:1
  • 3Cardoso JF.Blind signal processing[].Proceedings of the IEEE.1998 被引量:1
  • 4Cardoso JF.Higher order contrasts for independent component analysis[].Neural Computation.1999 被引量:1
  • 5Amari SI.Natural gradient works effciently in learning[].Neural Computation.1998 被引量:1
  • 6Cichocki A,Unbehanen R,Rummert E.Robust learning algorithm for blind separation of sources[].Electronics Letters.1994 被引量:1
  • 7Lee TW,Amari SI,Cichocki AC.Independent component analysis using an extended infomax algorithm for mixed sub-Gaussian and super -Gaussian sources[].Neural Computation.1999 被引量:1
  • 8Cardoso JF,Laheld BH.Equivariant adaptive source separation[].IEEE Transactions on Signal Processing.1996 被引量:1
  • 9Comon P.Independent component analysis:A new concept ?[].Signal Processing.1994 被引量:1
  • 10Hyvarinen A,Oja E.A fast fixed-point algorithm for independent component analysis[].Neural Computation.1997 被引量:1

共引文献64

同被引文献13

引证文献2

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部