期刊文献+

基于ICA和SVM的SAR图像特征提取与目标识别 被引量:15

SAR Images Feature Extraction and Target Recognition Based on ICA and SVM
下载PDF
导出
摘要 提出一种利用独立分量分析和支持向量机的合成孔径雷达图像特征提取与目标识别方法。对图像小波分解后提取低频子带图像,对低频子带图像进行独立分量分析提取特征向量,利用支持向量机对特征向量分类完成目标识别。将该方法用于MSTAR数据中的3类目标识别,识别率最高可达96.92%。实验结果表明,该方法是一种有效的合成孔径雷达图像特征提取与目标识别方法。 This paper presents a new method for Synthetic Aperture Radar(SAR) images feature extraction and target recognition using independent component analysis and support vector machine. Low-frequency sub-band image is obtained by wavelet decomposition of a SAR image. Independent Component Analysis(ICA) is used for extracting feature vectors from the low-frequency sub-band image as the feature of the target. Support Vector Machine(SVM) is used to perform target recognition. The method is used for recognizing three-class targets in MSTAR database and the recognition rate arrives at 96.92%. Experimental result shows that the method is an effective method for SAR images feature extraction and target recognition.
出处 《计算机工程》 CAS CSCD 北大核心 2008年第13期24-25,28,共3页 Computer Engineering
关键词 合成孔径雷达 独立分量分析 支持向量机 识别 Synthetic Aperture Radar(SAR) Independent Component Analysis(ICA) Support Vector Machine(SVM) recognition
  • 相关文献

参考文献7

  • 1Comon P. Independent Component Analysis: A New Concept[J]. Signal Processing, 1994, 36(3): 287-314. 被引量:1
  • 2Bell A, Sejnowski T J. Information-maximization Approach to Blind Separation and Blind Deconvolution[J]. Neural Computation, 1995, 7(6): 1129-1159. 被引量:1
  • 3徐正光,武楠,穆志纯.基于独立分量分析的人耳识别方法[J].计算机工程,2006,32(19):178-180. 被引量:7
  • 4Vapnik V N. An Overview of Statistical Learning Theory[J]. IEEE Trans. on Neural Networks, 1999, 10(5): 988-999. 被引量:1
  • 5Ross T D, Worrell S W, Velten V J, et al. Standard SAR ATR Evaluation Experiments Using the MSTAR Public Release Data Set[C]//Proc. of SPIE Conference on Algorithm for Synthetic Aperture Radar Imagery. Orlando, Florida, USA: [s. n.], 1998. 被引量:1
  • 6Zhao Qun, Principe J C. Support Vector Machines for SAR Automatic Target Recognition[J]. IEEE Trans. on Aerospace and Electronic Systems, 2001, 37(2): 643-654. 被引量:1
  • 7Nilubol C, Pham Q H. Translational and Rotational Invariant Hidden Markov Model for Automatic Target Recognition[C]//Proc. of SPIE Conference on Signal Processing, Sensor Fusion, and Target Recognition. Orlando, Florida, USA: [s. n.], 1998. 被引量:1

二级参考文献4

  • 1Rinen A H,Oja E.Independent Component Analysis:Algorithms and Applications[J].Neural Networks,2001,13(4/5):411-430. 被引量:1
  • 2Bartlett M S,Movellan J R,Sejnowski T J.Face Recognition by Independent Component Analysis[J].IEEE Transactions on Neural Networks,2002,13(6):1450-1464. 被引量:1
  • 3Kwalk N,Chong-Ho Choi,Ahuja N.Face Recognition Using Feature Extraction Based on Independent Component Analysis[C].Proc.of IEEE International Conference on Image Processing,New York,USA,2002. 被引量:1
  • 4王明祥,莫玉龙.基于独立分量分析和神经网络的人脸识别方法[J].计算机工程与应用,2004,40(5):4-6. 被引量:7

共引文献6

同被引文献127

引证文献15

二级引证文献84

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部