摘要
从Legendre椭圆积分和Jacobi椭圆函数的定义出发 ,得到了新的变换 ,并把它用于非线性演化方程的求解 .用三个具体的例子 ,如非线性Klein_Gordon方程、Boussinesq方程和耦合的mKdV方程组 ,说明了具体的求解步骤 .比较方便地得到非线性演化方程或方程组的新解析解 ,如周期解。
From the definition of Legendre elliptic integration and Jacobi elliptic function, new transformations are obtained and applied to construct the exact solutions of nonlinear wave equations. The nonlinear Klein-Gordon equation, Boussinesq equation and the coupled mKdV equations are taken as three examples to illustrate the detailed steps in obtaining exact solutions. There new analytical solutions such as periodic solutions and soliton solutions are derived for these nonlinear evolution equation (or equations).
出处
《物理学报》
SCIE
EI
CAS
CSCD
北大核心
2004年第2期343-348,共6页
Acta Physica Sinica
基金
国家自然科学基金 (批准号 :40 175 0 16)
国家教育部博士点基金 (批准号 :2 0 0 0 0 0 0 15 6)资助的课题~~