期刊文献+

基于神经网络质量模型的磨矿过程智能控制 被引量:2

Intelligent Control of Grinding Process Based on Neural Network Quality Model
下载PDF
导出
摘要 通过分析实际磨矿过程的生产状况和基本生产数据,建立在磨矿过程中结合比值调节控制前水和给矿量,运用专家 系统对给矿量进行优化控制和基于神经网络质量模型的智能控制方法。实际仿真研究表明,该方法能够提高生产效率,解决磨矿 过程中有一定难度的溢流浓度和分级粒度控制问题。 The intelligent control system with the expert system and the neural network quality model as well as PID feeding adjustment of ore and water is established on the basis of the analysis of the practical production situation and the basic production data in the grinding process for milling shop of Jinchuan Nonferrous Metals Corporation. Practical simulation and research show that the production efficiency of the milling system is increased, and the overflowing concentration and size grading control are satisfied by use of this system.
出处 《有色金属》 CAS CSCD 2004年第1期86-89,共4页 Nonferrous Metals
关键词 选矿 磨矿 质量模型 神经网络 专家系统 智能控制 mineral processing grinding process quality model neural network expert system intelligent control
  • 相关文献

参考文献6

二级参考文献8

  • 1王大民 陈炳辰 等.电功率法测定磨矿功率的研究[J].金属矿山,1984,(11):38-42. 被引量:1
  • 2Willis M J,Montague G A and Massimo C Di,et al.Artificial neural networks in process estimation and control [J].Automatica,1992,28(6):1181-1187 被引量:1
  • 3Chen Bingchen.Mathematic Model of the Concentration [M].Shenyang: Northeastern University Press,1990 (in Chinese) 被引量:1
  • 4Rao T C.The characteristics of hydrocylones and their application as control units in comminution circuits [D].Australia: University of Queensland,1996 被引量:1
  • 5Xie Hengxing.Research of mathematic model of industrial screw classifier [D].Changsha: Central South University of Technology,1988 (in Chinese) 被引量:1
  • 6Luo Rongfu and Shao Huihe.Research of associated variables choice in the reference control [A].In Proc.of Control and Decision Conference of China [C],Shenyang,China,1992 (in Chinese) 被引量:1
  • 7Xu Lei,Krzyzak A and Oja E.Rival penalized competitive learning for clustering analysis,RBF net,and curve detection [J].IEEE Trans.on Neural Networks,1993,4(4):636-649 被引量:1
  • 8徐道清.ABC流程在德兴钢矿的应用[J].有色冶金设计与研究,1991,12(1):12-20. 被引量:1

共引文献25

同被引文献18

  • 1周开利,康耀红.神经网络模型及其MATLAB仿真程序设计[M].北京:清华大学出版社.2007. 被引量:14
  • 2L.Podlubny.Fractional-order-systems and -controllers,IEEE Trans. Automatic Control, 1999.44 ( 1 ) : 208-214. 被引量:1
  • 3MENDEZ D A, GALVEZ E D, CISTERNAS L A. Cisternas Modeling of grinding and classification circuits as applied to the design of flotation processes[J]. Computers & Chemical Engineering, 2009,33 ( 1 ) : 97-111. 被引量:1
  • 4GONZALEZ G D, MIRANDA D, CASALI A, et al. Detection and identification of ore grindability in a semiautogenous grinding circuit model using wavelet transform variances of measured variables [J].International Journal of Mineral Processing, 2008, 89(1) :53-59. 被引量:1
  • 5CHOI T J, SUBRAHMANYA N, LI H, et al. Generalized practical models of cylindrical plunge grinding processes [J ]. International Journal of Machine Tools and Manufacture, 2008,48 ( 1 ) : 61-72. 被引量:1
  • 6ZHANG R X, HUANG G B, SUNDARAJAN N, et al. Improved GAP-RBF network for classification problems [J]. Neuroeomputing, 2007, 70 ( 16): 3011-3018. 被引量:1
  • 7AGUIRRE L A, ALVES G B, CORREA M A. Steady-state performance constraints for dynamical models based on RBF networks [J].Engineering Applications of Artificial Intelligence, 2007, 20 (7) 924-935. 被引量:1
  • 8BEHOUNRK L. On the difference between traditional and deductive fuzzy logic[J].Fuzzy Sets and Systems, 2008,159(10) :1153-1164. 被引量:1
  • 9CIRIC M, IGNJATOVIC J, BOGDANOVIC S. Fuzzy equivalence relations and their equivalence classes[J]. Fuzzy Sets and Systems, 2007,158(12):1295-1313. 被引量:1
  • 10KENNEDY J, EBERHART R. Particle swarm optimization E M3. Perth, Australia: [s. n. ], 1995: 1942-1948. 被引量:1

引证文献2

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部