期刊文献+

基于平衡降阶模型的电力系统多机励磁预测控制 被引量:2

Excitation Predictive Control of Multi-machine Power Systems Based on Balanced Reduction Model
下载PDF
导出
摘要 介绍一种基于平衡降阶理论的电力系统多机励磁预测控制方法。为减少开环优化计算时间,利用平衡降阶理论对电力系统多机线性模型进行降阶,降低预测模型维数。以预测步长内系统输出和控制量的偏差最小为优化控制指标,以模型降阶微分方程、状态和输入为约束条件,利用改进内点法求解优化问题。从降低模型阶数和改进优化算法两方面降低计算复杂度,加快在线计算速度,适用于电力系统大规模励磁控制。对某50机系统进行仿真验证该方法的有效性,仿真结果表明:基于平衡降阶模型的励磁预测控制器可极大降低优化计算时间,提高系统的稳定性。 An excitation predictive control method for multi-machine power system based on balanced reduction model is presented. In order to shorten the open-loop optimization calculating time of model predictive control (MPC), the theory of balanced reduction is used to reduce the orders of multi-machine power system linear dynamic model. It uses the least-square residual of system output and control variables as the objection function, using reduced dynamic model and the change limits of system states and inputs as constraints. Then, the improved interior-point method is used to solve the optimal problem. The optimization calculation of MPC can be sped up from two aspects of the reduction of the dynamic model orders and the improvement of the optimization algorithm, and it is suitable for excitation control of large-scale power system. Finally, a fifty-machine power system is used to verify the effectiveness of the presented method. The simulation results show that excitation predictive control method based on balanced reduction model can greatly shorten the optimization calculating time and improve the stability of power system.
出处 《智能电网》 2015年第5期388-393,共6页 Smart Grid
基金 国家自然科学基金项目(51077053)~~
关键词 多机系统 模型预测控制 励磁控制 平衡降阶 multi-machine power system model predictive control excitation control balanced reduction
  • 相关文献

参考文献14

  • 1Yang Wang,Boyd, S.Fast Model Predictive Control Using Online Optimization. Control Systems Technology, IEEE Transactions on . 2010 被引量:1
  • 2Moore BC.Principal component analysis in linear systems: controllability, observability and model reduction. IEEE Transactions on Automatic Control . 1981 被引量:1
  • 3Florian A. Potra,Stephen J. Wright.Interior-point methods[J]. Journal of Computational and Applied Mathematics . 2000 (1) 被引量:1
  • 4Beccuti A G,Demiray T,Zima M,et al.Comparative assessment of predictive models in voltage control. Power Tech 2007 . 2007 被引量:1
  • 5Kokotovic, P.V.,Sauer, P.W.Integral manifold as a tool for reduced-order modeling of nonlinear systems: A synchronous machine case study. Circuits and Systems, IEEE Transactions on . 1989 被引量:1
  • 6Jin L,Kumar R,Elia N.Application of model predictive control in voltage stabilization. Proceedings of the 2007 American Control Conference . 2007 被引量:1
  • 7倪以信等著.动态电力系统的理论和分析[M]. 清华大学出版社, 2002 被引量:3
  • 8Li Zhiwei,Lan Xiaoming,Zhao Hongshan.Empiricalgramians model reduction of controlled nonlinear powersystems. Information Engineering Letters . 2011 被引量:1
  • 9Allgower F,Findeisen R,Nagy Z K.Nonlinear model predic-tive control:from theory to application. Journal of the Chi-nese Institute of Chemical Engineers . 2004 被引量:1
  • 10赵洪山,宋国维,江全元.利用平衡理论进行电力系统模型降阶[J].电工技术学报,2010,25(2):127-133. 被引量:18

二级参考文献53

  • 1孙浩,席裕庚,张钟俊.一类非线性系统的模型预测控制算法[J].上海交通大学学报,1994,28(4):68-75. 被引量:7
  • 2孙元章,黎雄,戴和平,卢强.同时改善稳定性和电压精度的非线性励磁控制器[J].中国电机工程学报,1996,16(5):332-336. 被引量:40
  • 3梁志珊.电力系统非线性预测控制[M].沈阳:东北大学,1999.. 被引量:1
  • 4Enrico De Tuglie, Silvio Marcello Iannone, Francesco Torelli. A coherency recognition based on structural decomposition procedure[J]. IEEE Transactions on Power Systems, 2008, 23(2): 555-563. 被引量:1
  • 5Kokotovic P V, Avramovic B, Chow J H, et al Coherency based decomposition and aggregation[J] Automatica, 1982, 18(1): 47-56. 被引量:1
  • 6Zecevic A I, Gacic N. An algorithm for model reduction in large electric power systems[J].Mathemetical Problems in Engineering, 1998, 4(1): 43-58. 被引量:1
  • 7Kokotovic P V, Sauer P W. Integral manifold as a tool for reduced order modeling of nonlinear system: A synchronous machine case study[J]. IEEE Trans. on Circuit and Systems, 1989, 36(3): 403-410. 被引量:1
  • 8Martins N, Lima L G, Pinto H P. Computing dominant poles of power system transfer functions[J]. IEEE Trans. on Power Systems, 1996, 11(1): 162-170. 被引量:1
  • 9Martins N, Quintao P E. Computing dominant poles of power system multivariable transfer functions[J]. IEEE Trans. on Power Systems, 2003, 18(1): 152-159. 被引量:1
  • 10Chaniotis D, Pai M A. Model reduction in power systems using Krylov subspace methods[J]. IEEE Transaction on Power Systems, 2005, 20(2): 888-894. 被引量:1

共引文献71

同被引文献74

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部