期刊文献+

基于集成神经网络与模糊逻辑融合的稳压器泄漏监测方法 被引量:3

Leak Monitoring Method for Pressurizer Based on Integrated Neural Networks and Fuzzy Logic Fusion
下载PDF
导出
摘要 针对稳压器泄漏难以监测的问题,将集成神经网络(INN)与模糊逻辑融合(FLF)方法相结合,研究了稳压器泄漏监测方法。在该方法中,利用RBF神经网络(RBF-NN)建立稳压器泄漏诊断模型;采用两个Elman神经网络(Elman-NN)分别建立稳压器参数预测模型与稳压器泄漏诊断模型;应用模糊逻辑融合方法对RBF-NN与Elman-NN诊断的结果进行融合,并将其作为稳压器泄漏最终监测结果。为验证该方法的可行性,利用压水堆核动力装置模拟器对其监测效果进行了验证。结果表明,与单神经网络诊断方法相比,所提出的监测方法具有更高的可靠性;与其他泄漏监测方法相比,该方法简便、易行。 A new leak monitoring method based on integration neural networks(INN)and the fuzzy logic fusion(FLF)was proposed to solve the problem of pressurizer leak monitoring.In this approach,apressurizer leaking diagnosis model was established by a radial basis function neural network(RBF-NN).Two Elman neural networks(ElmanNN)were used to establish pressurizer parameters prediction model and pressurizer leak diagnosis model respectively.Then,the fuzzy logical method was used to fuse the diagnosed results of RBF-NN and Elman-NN.The fusion results were the final monitoring results.The nuclear power simulator was used to test the feasibility of the proposed method.The results show that compared with the diagnosis method based on single neural network,the proposed method is simple and reliable.
出处 《原子能科学技术》 EI CAS CSCD 北大核心 2014年第S1期474-479,共6页 Atomic Energy Science and Technology
关键词 稳压器 集成神经网络 模糊逻辑融合 泄漏监测 pressurizer integrated neural networks fuzzy logic fusion leak monitoring
  • 相关文献

参考文献3

二级参考文献25

  • 1张晓丹,赵海.神经网络集成融合模型研究及应用[J].计算机工程,2007,33(14):210-212. 被引量:2
  • 2NABESHIMA K, SUZUDO T, SUZUKI K. Real time nuclear plant monitoring with neural network [J].Journal of Nuclear Science and Technology, 1998, 35(2):93-100. 被引量:1
  • 3HAM F M, KOSTANIC I. Principles of nearocomputing for science & engineering[M]. First Edition. Beijing: China Machine Press, 2003: 140-151. 被引量:1
  • 4UPADHYAYA B R, YAN W, BEHRAVESH M M, et al. Development of a diagnostic expert system for eddy current data analysis using applied artificial intelligence methods[J].Nuclear Engineering and Design, 1999, 193: 1-11. 被引量:1
  • 5AHMADD Z, ZHANG J. Combination of multiple neural networks using data fusion techniques for enhanced nonlinear process modelling [J]. Computers and Chemical Engineering, 2005, 30 :295-308. 被引量:1
  • 6ZHANG J. Improved on-line process fault diagnosis through information fusion in multiple neu ral networks [J].Computers and Chemical Engi neering, 2006, 30: 558-571. 被引量:1
  • 7MO K, LEE S J, SEONG P H. A dynamic neural network aggregation model for transient diagnosis in nuclear power plants [J]. Progress in Nuclear Energy, 2007, 49: 262-272. 被引量:1
  • 8Singh S. 2D Spiral Recognition Using Possibilistic Measures[J]. Pattern Recognition Letters, 1998, 19(2): 141-147. 被引量:1
  • 9Liang Yanchun, Feng D P, Lee H P, et al. Successive Approxi- mation Training Algorithm for Feed Forward Neural Networks[J]. Neurocomputing, 2002, 42(1-4): 311-322. 被引量:1
  • 10Hansen L K, Salamon P. Neural Network Ensembles[J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1990, 12(10): 993-1001. 被引量:1

共引文献3

同被引文献27

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部