摘要
由于云与积雪在可见光和远红外波段都具有相似的光谱特征,使得光学遥感监测积雪受到天气的严重干扰,如何消除亚像元尺度上MODIS积雪覆盖率(Snow Cover Fraction,SCF)产品中云的干扰成为了一个亟待解决的难题。通过分析亚像元尺度上SCF分布的空间变异性,提出了一种基于克里金空间插值的MODIS SCF产品去云方法,分别利用普通克里金(Ordinary Kriging,OK)和以海拔为协变量的普通协克里金(Ordinary Co-Kriging,OCK)进行去云实验。11个不同日期的实验结果表明:OK和OCK方法在MODIS SCF产品去云中均能达到较高的精度,特别是在云覆盖率低于20%的情况下,此时OCK的精度要好于OK;而当云覆盖率大于20%时,OK的精度略高于OCK,但两者的精度都明显低于云覆盖率低于20%的情况,而且平滑效应都比较明显。
Because of the similar spectral characteristics of cloud and snow cover in the visible and far-infrared bands,the snow cover monitoring through optical remote sensing is seriously limited by weather condition.How to reduce the cloud obscuration of MODIS Snow Cover Fraction(SCF)product in a sub-pixel scale becomes a pressing problem.This study eliminates the cloud contamination of MODIS SCF product using the method of kriging spatial interpolation based on the analysis of SCF spatial variability,and we conduct experiment by Ordinary Kriging(OK)and Ordinary Co-Kriging(OCK),respectively.The experimental results of eleven different dates show that both OK and OCK method are approved the good accuracy for cloud-removal of MODIS SCF products,especially in the case of that cloud cover rate is less than 20% and the performance of OCK is superior to OK.Although the performance of OK is slightly better than OCK,both of them have significantly worse performance and the obviously smooth effect when the cloud coverage is greater than 20%.
出处
《遥感技术与应用》
CSCD
北大核心
2014年第6期1001-1007,共7页
Remote Sensing Technology and Application
基金
国家自然科学基金项目"积雪的观测
模拟和多尺度遥感数据同化方法研究"(41271358)
中国科学院"百人计划"项目"寒旱区地表水文关键要素的多源遥感数据同化研究"(29Y127D01)资助