摘要
记为非负单增函数且一阶偏导数均存.本文证明:(i)广义n参数Wiener过程(GBn)和广义n参数Ornstein-Uhlenbeck过程(广义OUPn)在D中导出的过程是马氏过程;(ii)如果GBn(或广义OUPn)在D中导出的过程成为某个GBk(或某个广义OUPk),则fj(t1…,tk)未必恒为正常数.(j=k+1,…,n).
Let D be the subset of is derivable and increasions. W is the process induced by the generalized Wiener process with n-parameters (GBn) on D,Y is the process induced by the generalized Ornstein-Uhlenbeck Process with n-parameters (GOUPn)on D.It is showed that:(i)W and Y are Markov process;(ii)Not all are constants even if W(or Y)is GBk(or GOUPk)
出处
《数学研究》
CSCD
1996年第4期99-102,共4页
Journal of Mathematical Study