摘要
一个给定的图是否存在用r种颜色的正常Pk着色?称该问题为图的(k,r)路色数问题.本文研究其算法复杂性,并得到以下结果:对于任意给定的k,2≤k≤∞,图的(k,2)路色数问题及直径为2的图的(k,3)路色数问题都是NP-完全的;对于任意给定的k,2≤k≤∞,平面图的(k,3)路色数问题也是NP-完全的.
Is there a normal Pk coloring using r colors for a given graph? This problem is called as the (k,r) path chromatic number problem of graphs. This paper studies the computational complexity of this problem, and obtains the following results: For any given integer k, 2≤k≤∞.the (k,2) path chromatic number problem for graphs and the (k,3) path chromatic number problem for graphs with diameter 2 are NP-complete ; For any given integer k,2≤k≤∞.the (k,3) path chromatic number problem for planar graphs is also NP-complete.
出处
《数学研究》
CSCD
1995年第1期49-53,共5页
Journal of Mathematical Study
基金
国家自然科学基金