期刊文献+

求解非线性动力系统周期解推广的打靶法 被引量:9

Generalized Shooting Method for Determining the Periodic Orbit of the Nonlinear Dynamics System
下载PDF
导出
摘要 提出一种确定非线性系统周期轨道及周期的改进打靶算法。首先通过改变系统的时间尺度 ,将非线性系统周期轨道的周期显式地出现在非线性系统的系统方程中 ,然后对传统打靶法进行改造 ,将周期也作为一个参数一起参入打靶法的迭代过程 ,从而能迅速确定出系统的周期轨道及其周期。该方法对初始迭代参数没有苛刻要求 ,可以用于分析强非线性系统 ,而且对参数激励系统同样有效 ,对高维系统也能迅速、准确地求得周期解。文中应用该方法对三维R¨ossler系统和八维非线性柔性转子 轴承系统的周期轨道和周期进行了求解 ,通过与四阶Runge Kutta数值积分结果比较 。 In this paper, a new generalized shooting method for determining the periodic orbit and its period of the nonlinear dynamic system is presented by rebuilding the traditional shooting method. At first, by changing the time scale the period of the periodic orbit of the nonlinear system is drawn into the governing equation of this system explicitly, then, the period as a parameter takes part into the iteration procedure of the shooting method together. The periodic orbit and its period of the system can be determined rapidly and precisely. The method needn't the rigor of the initial iteration conditions and it can be used for analyzing the forced nonlinear systems and also the parametric excited systems. As an illustrative example, the computation results of Rossler equation and an eight-dimensional nonlinear flex-rotor system are compared with those obtained via the Runge-Kutta integration algorithm. The validity of this method is verified by the results obtained in two examples.
机构地区 西安交通大学
出处 《应用力学学报》 CAS CSCD 北大核心 2003年第4期80-85,共6页 Chinese Journal of Applied Mechanics
基金 国家自然科学基金重大项目 (批准号 19990 5 10 )资助
关键词 周期解 打靶法 非线性动力系统 分岔 混沌 迭代参数 Runge-Kutta数值积 摄动法 periodic solution, shooting method, nonlinear dynamic system, bifurcation, chaos.
  • 相关文献

参考文献4

  • 1顾家柳等编著..转子动力学[M].北京:国防工业出版社,1985:269.
  • 2周纪卿,朱因远..非线性振动[M].西安:西安交通大学出版社,1998:423.
  • 3蔡大用,白峰杉编著..高等数值分析[M].北京:清华大学出版社,1997:298.
  • 4凌复华.非线性振动系统周期运动及其稳定性的数值研究[J].力学进展,1986,16(1):14-27. 被引量:7

共引文献6

同被引文献89

引证文献9

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部