期刊文献+

一致凸度量空间的公共不动点定理 被引量:2

Common Fixed Point Theorems in Uniformly Convex Metric Space
下载PDF
导出
摘要 利用一致凸度量空间中的凸性模和自映象对的次相容性,讨论了一类4个自映象的公共不动点的存在性和唯一性问题,得到了一个公共不动点定理.该结果改进和推广了近期的相关结果. Using the sub‐compatibility of convex modulus and self‐mapping pair in uniformly convex metric spaces ,we discuss the existence and uniqueness of some common fixed points with four self‐mappings in this paper .A new common fixed point theorem is obtained ,which largely improves and extends some re‐lated results that have been published recently in uniformly convex metric spaces .
作者 曾秀华 邓磊
出处 《西南大学学报(自然科学版)》 CAS CSCD 北大核心 2015年第2期69-73,共5页 Journal of Southwest University(Natural Science Edition)
基金 国家自然科学基金(11226228)
关键词 公共不动点 一致凸度量空间 次相容 自映象对 common fixed point uniformly convex metric space subcompatible self-mapping pair
  • 相关文献

参考文献8

  • 1Qing-you Liu,Zhi-bin Liu,Nan-jing Huang.Approximating the common fixed points of two sequences of uniformly quasi-Lipschitzian mappings in convex metric spaces[J]. Applied Mathematics and Computation . 2010 (3) 被引量:1
  • 2Takahashi W.A convexity in metric space and nonexpansive mappings I. Kodai Mathematical Seminar Reports . 1970 被引量:2
  • 3H. Fukhar-ud-din,A.R. Khan,Z. Akhtar.Fixed point results for a generalized nonexpansive map in uniformly convex metric spaces[J]. Nonlinear Analysis . 2012 (13) 被引量:1
  • 4Common fixed points of four maps in partially ordered metric spaces[J]. Applied Mathematics Letters . 2011 (9) 被引量:1
  • 5Tomoo Shimizu,Wataru Takahashi.Fixed points of multivalued mappings in certain convex metric spaces. Topol. Methods Nonlinear Anal . 1996 被引量:1
  • 6谷峰等著..不动点定理及非线性算子的迭代收敛性[M].哈尔滨:黑龙江科学技术出版社,2002:435.
  • 7巨小维,谷峰.关于渐进非扩张映象Noor迭代的进一步修正[J].西南师范大学学报(自然科学版),2008,33(3):5-10. 被引量:4
  • 8田有先,陈六新.有限一致拟-李卜希兹映象族公共不动点的逼近[J].西南大学学报(自然科学版),2009,31(4):25-29. 被引量:6

二级参考文献20

  • 1田有先,胡晓力.p-凸度量空间更广义拟压缩映射不动点迭代[J].四川师范大学学报(自然科学版),2006,29(3):288-293. 被引量:2
  • 2Takahashi W. A Convexity in Metric Space and Nonexpansive Mappings[J]. Kodai Math Sem Rep, 1970, 22:142 -- 149. 被引量:1
  • 3Kirk W A, Krasnoselskii's. Iteration Process in Hyperbolic Space [J]. Numer Funet Anal Optimiz, 1982, 4:371 --381. 被引量:1
  • 4Goebel K, Kirk W A. Iteration Processes for Nonexpansive Mappings [J].Contemporary Math, 1983, 21 : 115 - 123. 被引量:1
  • 5Petryshyn W V, Williamson T E. Strong and Weak Convergence of the Sequence of the Successive Approximations for Quasi-Nonexpansive Mappings [J].J Math Anal Appl, 1973, 43:459- 497. 被引量:1
  • 6Ghosh M K, Debnath L. Convergence of tshikawa Iterates of Quasi-Nonexpansive Wappings[J]. J Math Anal Appl, 1997, 207: 96-103. 被引量:1
  • 7Liu Qihou. Iterative Sequence for Asymptotically Quasi-Nonexpansive Mappings [J]. J Math Anal Appl, 2001, 259: 1-7. 被引量:1
  • 8Liu Qihou. Iterative Sequence for Asymptotically Quasi-Nonexpansive Mappings with Error Member [J]. J Math Anal Appl, 2001, 259: 18--24. 被引量:1
  • 9Liu Qihou. herative Sequence for Asymptotically Quasi-Nonexpansive Mappings with an Error Member of Uniform Convex Banach Space [J]. J Math Anal Appl, 2002, 266: 468--471. 被引量:1
  • 10Tian Y X. Convergence of an Ishikawa Type Iterative Scheme for Asymptotically Quasi-Nonexpansive Mappings [J]. Comput Math Appl, 2005, 49:1905--1912. 被引量:1

共引文献8

同被引文献6

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部