期刊文献+

凸度量空间中的不动点和最佳逼近

Fixed Point and Best Approximation in Menger Convex Metric Spaces
原文传递
导出
摘要 讨论了凸度量空间上不动点的存在和最佳逼近问题.主要得到以下结论:设(X,d)是一个凸度量空间,F是X的非空闭子集,T:F→X是一个连续映射且T(F)包含于X的一个紧子集D中,则T有不动点当且仅当对每一个ε>0,T具有ε-不动点;设(X,d)是一个完备的一致凸度量空间,M是X的一个闭凸集,如果对每一个x∈X,PM(x)是单点集,那么最近点投影P:X→M是连续的;设(X,d)是严格凸度量空间,MX是非空闭集,且是T-正则的,如果T是紧自映射且u∈X使d(T(x),u)≤d(x,u),x∈M,那么M中每一个u的最佳逼近点都是T的不动点. The existence of fixed point and the best approximation problem of convex metric spaces are researched. It is obtained as follow : Let F be a closed subset of a convex metric spaces X. Let T: F → F be a continuous map and T(F) a subset of a compact subset D of X, then T has a fixed point if and only if T has a ε -fixed point for each ε 〉 0. Let M be a closed convex subset of a uniformly convex complete metric space X. If PM (x) is singleton for each x ∈ X , then the nearest point projection P :X→M is continuous. Let M be a nonempty closed and T-regularsubset of a strictly convex metric space X, where T is a compact self mapping and u be a point in X. Suppose that d(T(x) ,u) ≤ d(u,x) for all x in M. Then each x in M, which is best approximation to u, is a fixed point of T.
出处 《福建师范大学学报(自然科学版)》 CAS CSCD 北大核心 2014年第4期9-14,共6页 Journal of Fujian Normal University:Natural Science Edition
关键词 非扩张映射 拟非扩张映射 不动点 最佳逼近 凸度量空间 nonexpansive map quasi nonexpansive map fixed point best approximation convex metric space
  • 相关文献

参考文献10

  • 1Aronszajn N, Panitchpakdi P. Extension of uniformly continuous transformations and hyper convex metric spaces [ J ]. Pacific J Math, 1956, 6:405 -439. 被引量:1
  • 2Ayerbe Toledano J M, Dominguez Benavides T, Lopez Acedo G. Measures of noncompactness in metric fixed point theory [ M]. Basel: Birkhauser, 1997. 被引量:1
  • 3Beg I, Azam A. Fixed points of asymptotically regular muhivalued mappings [J]. Austral Math Soc Ser, 1992, 53 (3) : 313 -326. 被引量:1
  • 4Beg I, Azam A. Common fixed points for commuting and compatible maps [J]. Discuss Math Differential Incl, 1996, 16:121 - 135. 被引量:1
  • 5Blumenthal L M. Distance geometry [M]. Oxford: Clarendon Press, 1953. 被引量:1
  • 6Goeble K, Kirk W A. Topics in metric fixed point theory [ M]. London: Cambridge University Press, 1990. 被引量:1
  • 7Prus B, Smarzewski R S. Strongly unique best approximation and centers in uniformly convex spaces [ J ]. Math Anal Appl, 1978, 121:85-92. 被引量:1
  • 8Menger K. Untersuchungen tiber allegemeine metrik [J]. Math Ann, 1928 (100) : 75 -63. 被引量:1
  • 9Khalil R. Best aooroximation in metric soaces [J]. Proc Amer Math Soc. 1988. 103:579 -586. 被引量:1
  • 10Browder F E. Nonexpansive nonlinear operators in Banach space [ J]. Proc Nat Acad Sci USA, 1965, 54: 1041 - 1044. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部