期刊文献+

自由基捕捉剂抗氧活性的分子模拟 被引量:1

Molecular simulation on antioxidative activity of free radical scavenger
下载PDF
导出
摘要 为探究抗氧剂抗氧化活性,采用Materials Studio 7. 0版本模拟软件Dmol3模块对自由基捕捉剂类抗氧剂中的酚类和胺类抗氧剂分子进行模拟计算分析。通过对4种典型抗氧剂分子的前线轨道及X—H键解离能结果进行分析可知,2,6-二叔丁基对甲酚抗氧化活性略好于4,4亚甲基双(2,6-二叔丁基苯酚),N-苯基-α-萘胺抗氧化活性明显高于4-丁基-4’-辛基二苯胺,且在此4种抗氧剂中酚类抗氧剂活性略高于胺类。在典型抗氧剂分子的基础上,探究取代基变化对分子抗氧化活性的影响,得出取代基对分子的抗氧化活性有显著影响、且取代基碳数越多抗氧剂分子越活泼的结论。 In order to explore the activity of antioxidant,the molecules of phenolic and amine antioxidants among free radical scavenging antioxidants are simulated and analyzed by using Dmol3 module of Material Studio 7.0 simulation software.Through analyzing the frontier orbits and X-H bond dissociation energies of four typical antioxidant molecules,it is found that the antioxidative activity of 2,6-di-tertbutyl-4-methyl phenol is slightly better than that of 4,4-methylene-bis(2,6-di-tertbutyl phenol),and that of N-phenyl-alpha-naphthylamine is significantly higher than that of 4-butyl-4’-octyl diphenylamine.Among the four kinds of antioxidant,phenolic antioxidants exhibit a slightly higher activity than amine antioxidants.On the basis of typical antioxidant molecules,the effects of substituents on the antioxidative activity of antioxidant molecules are investigated.It is concluded that substituents have significant effects on the antioxidative activity of antioxidant molecules,and the more carbon number of substituents,the more active the antioxidant molecules are.
作者 胡雪莹 吕涯 HU Xue-ying;LV Ya(Petroleum Processing Research Institute,East China University of Science and Technology,Shanghai 200237,China)
出处 《现代化工》 CAS CSCD 北大核心 2019年第9期212-216,221,共6页 Modern Chemical Industry
关键词 酚类抗氧剂 胺类抗氧剂 前线轨道理论 键解离能 phenolic antioxidants amine antioxidants frontier orbital theory bond dissociation energy
  • 相关文献

参考文献3

二级参考文献41

  • 1Zhang H.Y.;.Sun Y.M.; Wang X.L J.Org.Chem.2002,67,2709. 被引量:1
  • 2Yamagami C.; Akamatsu M.; Motohashi N.; Hamada S.;Tanahashi T.Biorg.Med.Chem.Lett.2005,15,2845. 被引量:1
  • 3Bowry,V.W.; Ingold,K.U.Acc.Chem.Res.1999,32,27. 被引量:1
  • 4van Acker S.A.B.E.; Koymans LM.H.; Bast A.Free Rad.Biol.Med.1993,15,311. 被引量:1
  • 5Popelier,P.L.A.J.Phys.Chem.A 1999,103,2883-2890. 被引量:1
  • 6Zhang H.Y.; Sun Y.M.; Wang X.L.Chem.Eur.J.2003,9(2),502. 被引量:1
  • 7Laarhoven,L J.J.; Mulder,P.; Wayner.D.D.M.Acc.Chem.Res.1999,32,342. 被引量:1
  • 8Bordwell,F.G.; Cheng,J.P.J.Am.Chem.Soc.1991,113,1736. 被引量:1
  • 9Lucarini M.; Pedrielli P.; Pedulli G.F.; Cabiddu S.; Fattuoni C.J.Org.Chem.,1996,61,9259. 被引量:1
  • 10Brigati G.; Lucarini M.; Mugnaini V.; Pedulli G.F.J.Org.Chem.2002,67,4828. 被引量:1

共引文献35

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部