期刊文献+

基于支持向量机的人脸识别方法研究 被引量:12

Face Recognition Based on Support Vector Machines
下载PDF
导出
摘要 对于人脸识别问题 ,基于 K- L 变换对人脸图像进行特征参数的提取 ;并采用支持向量机进行分类 .由于支持向量机本身是一个两类问题的判别方法 ,在处理多类问题时 ,提出了一种基于支持向量机组的淘汰法 ,这种方法考虑到了各判别函数的 VC置信范围的差异 ,同时利用判别函数间的冗余来降低识别误差 .针对 ORL 人脸库和自建的人脸库的识别结果表明 ,基于 SVM的识别方法在特征参数个数的选取、识别效果、识别时间等方面都有其独到的优越性 . In face recognition, Karhunen-Loeve transform is employed to get the representation basis of face image set, and support vector machines are used to classify. Support Vector Machines (SVM) are classifiers which have demonstrated high generalization capabilities. SVM group incorporated with the elimination strategy is proposed to deal with the multi-class face recognition problem. For considering the differences among the confidence interval about the SVM and the redundancy of each SVM, a higher recognition rate can be reached. The face recognition experiment with the two face databases shows that the proposed method has reached a higher recognition rate and a reasonable time cost.
出处 《小型微型计算机系统》 CSCD 北大核心 2004年第1期139-142,共4页 Journal of Chinese Computer Systems
关键词 人脸识别 支持向量机 淘汰法 本征脸 face recognition support vector machines elimination strategy eigenfaces
  • 相关文献

参考文献4

二级参考文献18

  • 1[1]Vapnik V.The Nature of Statistical Learning Theory.New York:Springer-Verlag,1995 被引量:1
  • 2[2]Cortes CVapnik V.Support Vector Networks.Machine Learning,1995;20:273~297 被引量:1
  • 3[3]Osuna E,Freund R,Girosi F.Training Support Vector Machines:An Application to Face Detection.In:Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition,New York:IEEE,1997:130~136 被引量:1
  • 4[4]Dumais S,Platt J,Heckerman D,Sahami M.Inductive Learning Algorithms and Representations for Text Categorization.In:Proceedings of the 7th International Conference on Information and Knowledge Management,1998 被引量:1
  • 5[5]Joachims T.Text Categorization with Support Vector Machines:Learning with Many Relevant Features.In:Proceedings of the 10th European Conference on Machine Learning,1998 被引量:1
  • 6[6]Courant R,Hilbert D.Methods of Mathematical Physics. Volume 1,Berlin:Springer-Verlag,1953 被引量:1
  • 7[7]Stitson M O,Weston J A E,Gammerman A,Vovk V,Vapnik V.Theory of Support Vector Machines.Technical Report CSD-TR-96-17, Royal Holloway University of London,1996.12.31 被引量:1
  • 8[8]Osuna E,Freund R,Girosi F.Support Vector Machines:Training and Applications.AI Memo 1602,MIT AI Lab,1997 被引量:1
  • 9[9]Osuna E,Freund R,Girosi F.An Improved Training Algorithm for Support Vector Machines.In:Principe J,Gile L,Morgan N,Wilson E eds.,Proceedings of the 1997 IEEE Workshop on Neural Networks for Signal Processing,New York:IEEE,1997:276~285 被引量:1
  • 10[10] Joachims T.Making Large-Scale SVM Learning Practical.In:Schol-kopf B,Burges C J C,Smola A eds.,Advances in Kernel Methods Support Vector Learning,Cambridge,MA:MIT Press,1998:169~184 被引量:1

共引文献108

同被引文献64

引证文献12

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部