期刊文献+

基于人脸重要特征和SVM的人脸识别方法

A Face Recognition Method Based on Face Important Features and Support Vector Machine
下载PDF
导出
摘要 提出了一种基于人脸重要特征的人脸识别方法,首先选取人脸的重要特征并将其具体化,对得到的重要特征进行主成分分析,然后用支持向量机(Support Vector Machine,SVM)设计重要特征分类器来确定测试人脸图像中重要特征,同时设计支持向量机(SVM)人脸分类器,确定人脸图像的所属类别.对ORL人脸图像数据库进行仿真实验,结果表明,该方法要优于一般的基于整体特征的人脸识别方法并有较强的鲁棒性. A method for face recognition based on face important features proposed in this paper. At first selecting face important feature of regional and then the principle component analysis (PCA) coefficients are extracted as feature vectors from the face component image, then support vector machine (SVM) is used to train features and face recognition machine. Features classification machine distinguishes the component regions in the face image, and face classification machine determines which person the image should belong to. Some experiments have been made on the ORL face image database, This method has better recognition precision.
出处 《应用数学与计算数学学报》 2008年第1期109-114,共6页 Communication on Applied Mathematics and Computation
基金 上海市教委发展基金(项目编号:214665)
关键词 人脸识别 支持向量机 主成分分析 face recognition, support vector machine, principle component analysis
  • 相关文献

参考文献12

二级参考文献28

  • 1[1]Osuna E, Freund R, Girosi F. Training Support Vector Machines:An Application to Face Detection[C]. In :Proceeding of CVPR-97,Puerto Rico,1997 被引量:1
  • 2[2]Lee T S. Image Representation Using 2D Gabor Wavelets[J]. IEEE Trans., PAMI,1996,18(10):959-971 被引量:1
  • 3[3]Vapnik V N. The Nature of Statistical Learning Theory[M]. Springer, 1995 被引量:1
  • 4[4]Lyons M J. Automatic Classification of Single Facial Images[J]. IEEE Trans., PAMI,1999,21(12):1357-1362 被引量:1
  • 5[5]Platt J. Sequential Minimal Optimization: A Fastalgorithm for Training Support Vector Machines. Advances in Kernel Methods-support Vector Learning, Cambridge, MA: MIT Press,1999: 185-208 被引量:1
  • 6[6]Keerthi S S, Shevade S K, Bhattacharyya C, et al. A Fast Iterative Nearest Point Algorithm for Support Vector Machine Classifier Design [R]. Technical Report TR-ISL-99-03 Intelligent Systems Lab Dept of Computer Science and Automation Indian Institute of Science Bangalore, India,1999 被引量:1
  • 7[8]Vapnik V N. Statistical Learning Theory [M]. Wiely, New York, 1998 被引量:1
  • 8[9]Courant R, Hilbert D. Methods of Mathematical Physics [M]. Wildy- interscience, New York, 1953 被引量:1
  • 9[10]Osuna E, Freund R, Girosi F. An Improved Training Algorithm for Support Vector Machines. In:Proceedings of the 1997 IEEE Workshop on Neural Networks for Signal Processing, New York: IEEE,1997:276 被引量:1
  • 10[11]Joachims T. Making Large-scale SVM Learning Practiceal [M]. In: Advances in Kernel Methods-support Vector Learning, MIT Press, Cambridge, MA, 1998:169-184 被引量:1

共引文献336

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部