摘要
The K_xNa_((1-x))NbO_3(x=0.45, 0.46, 0.47, 0.48, 0.49, 0.50) lead-free piezoelectric ceramics was fabricated by conventional solid-state sintering method. It was found that the ratio of alkaline metal would affect the microstructure, bulk density, and optimum sintering temperatures of ceramics. Meanwhile, the electrical properties were also influenced by modulating the K/Na ratio, exhibiting corresponding composition-dependent properties. The optimum electrical properties of K_xNa_((1-x))NbO_3 such as piezoelectric constant d_(33) = 115 pC/N, mechanical quality factor Q_m = 20, Curie temperature Tc = 365 ~oC, ε_(33)~T/ε_0= 588.1, dielectric loss tan δ = 0.024, bulk density(ρ) = 3.08 g/cm^3, remnant polarization(P_r) = 8.87 μC/cm^2 and coercive field(Ec) = 13.79 kV/cm were obtained at x = 0.46.
The K_xNa_((1-x))NbO_3(x=0.45, 0.46, 0.47, 0.48, 0.49, 0.50) lead-free piezoelectric ceramics was fabricated by conventional solid-state sintering method. It was found that the ratio of alkaline metal would affect the microstructure, bulk density, and optimum sintering temperatures of ceramics. Meanwhile, the electrical properties were also influenced by modulating the K/Na ratio, exhibiting corresponding composition-dependent properties. The optimum electrical properties of K_xNa_((1-x))NbO_3 such as piezoelectric constant d_(33) = 115 pC/N, mechanical quality factor Q_m = 20, Curie temperature Tc = 365 ~oC, ε_(33)~T/ε_0= 588.1, dielectric loss tan δ = 0.024, bulk density(ρ) = 3.08 g/cm^3, remnant polarization(P_r) = 8.87 μC/cm^2 and coercive field(Ec) = 13.79 kV/cm were obtained at x = 0.46.
作者
CHEN Jianchao
ZHAO Pei
陈建超;WU Wei;SU Shi;YU Jishun;LEI Xinrong;赵培(Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Material Science and Engineering, Wuhan Institute of Technology;Faculty of Materials and Chemistry, China University of Geosciences;State Key Laboratory of Geological Process and Mineral Resources, China University of Geosciences)
基金
Funded by the National Natural Science Foundation of China(No.51302199)
Key Natural Science Foundation of Hubei Province of China for Distinguished Yong Scholars(No.2014CFA044)
Cultivation Plan for Science and Technology Talents of Wu Han City(No.2014072704011253)
MOST Special Fund from the State Key Laboratory of Geological Process and Mineral Resources(No.MSFGPMR201204)
Natural Science Foundation of Hubei Province(No.2014CFB809)