期刊文献+

一类具边界耗散的高阶非线性双曲方程整体解的不存在性 被引量:1

Nonexistence of Global Solutions to a Class Nonlinear Hyperbolic Equation with Boundary Dissipation
原文传递
导出
摘要 本文利用广义凸性方法证明了边界耗散的非线性四阶方程初边值问题整体解的不存在性 In this paper the nonexistence of global solutions to nonlinear hyperbolic equation with boundary dissipation is considered, by means of the generalized convexity method.
出处 《数学的实践与认识》 CSCD 北大核心 2003年第10期99-101,共3页 Mathematics in Practice and Theory
基金 国家自然科学基金(10 0 710 74 ) 河南省科技厅自然科学基金 河南省教育厅自然科学基金资助
关键词 高阶非线性双曲方程 整体解 不存在性 广义凸性 边界耗散 边值问题 初值问题 nonlinear hyperbolic equation nonexist ence of global solutions boundary dissipation
  • 相关文献

参考文献5

  • 1Banks H T, Gilliam D S, Shubov V I. Global solvability for damped abstract nonlinear hyperbolic system[J]. Diff Integ Equa, 1997, 10:309--332. 被引量:1
  • 2Aassila M, Guesmia A. Energy decay for a damped nonlinear hyperbolic equation[J]. Appl Math Lett, 1999, 12,49--52. 被引量:1
  • 3Maksudov F G, Alley F A. On a problem for a nonlineir hyperbolic equation of higher order with dissipation on the boundary of the domain[J]. Sov Math Dokl, 1992, 44: 771--774. 被引量:1
  • 4Alley A B. A mixed problem with dissipation on the boundary for quasllinear hyperbolic equation of second order[J]. Sov Math Dokl, 1986, 33: 836--839. 被引量:1
  • 5Kalantarov V K, Ladyzhenskaya O A. The occurrence of collapse for quasilinear equations of parabolic and hyperbolic type[J]. J Sov Math, 1978, 10: 53--70. 被引量:1

同被引文献12

  • 1Bluman G, Cheviakov A F, Senthilvelan M. Solution and asymptotic/blow-up behaviour of a class of nonlinear dissipative systems[J]. Journal of Mathematical Analysis and Applications, 2008, 339: 1199-1209. 被引量:1
  • 2Rivera J E, Racke R. Exponential stability for wave equations with non-dissipative damping[J]. Nonlinear Analysis: Theory, Methods & Applications 2008, 68: 2531-2551. 被引量:1
  • 3Hecke M. Coherent and incoherent structures in systems described by the 1D CGLE: experiments and identification[J]. Physica D, 2003, 174: 134-151. 被引量:1
  • 4Brusch L, Torcini A, Hecke M etc. Modulated amplitude waves and defect formation in the one- dimensional complex Ginzburg-Landau equation[J]. Physica D, 2001, 160: 127-148. 被引量:1
  • 5Fujita A. Numerical study for vortex lattice transition with extended Ginzburg-Landau model[J]. Physica C, 1998, 309: 65-70. 被引量:1
  • 6Moon H. Subcritical modulational instability and transition to chaos from periodicity[J]. Physics Letters A, 2004, 325: 324-328. 被引量:1
  • 7Lan Y, Garnier N, Cvitanovic P. Stationary modulated-amplitude waves in the 1D complex Ginzburg Landau equation[J]. Physica D, 2004, 188: 193-212. 被引量:1
  • 8Maruno K, Ankiewic A, Akhmediev N. Exact localized and periodic solutions of the discrete complex Ginzburg-Landau equation[J]. Optics Communications, 2003, 221: 199-209. 被引量:1
  • 9Dai C Q, Cen X, Wu S S, Exact solutions of discrete complex cubic Ginzburg-Landau equation via extended tanh-function approach[J]. Computers & Mathematics with Applications, 2008, 56: 55-62. 被引量:1
  • 10Maimistov A I, Basharov A M. Nonlinear Optical Waves[M]. Kluwer Academic Publishers, 1999. 被引量:1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部