期刊文献+

复合Ginzburg-Landau方程的动力学行为分析

Dynamical Analysis of the Complex Ginzburg-Landau Equation
原文传递
导出
摘要 目前对非线性波动方程的研究大都仅限于静态波解,即所考虑的波解的波速、振幅、波宽都是不变的,考虑动态波解,以复合Ginzburg-Landau(CGLE)方程为研究对象,探讨其动力学行为.在假设示性函数的基础上,所研究的无穷维耗散系统转化为三维向量场,给出了简单分岔和Hopf分岔存在的条件,揭示了系统平衡点和极限环随系统参数的变化规律,分析了参数平面的不同区域中系统的相图特性,得到系统存在两种不同频率的周期解,此外还数值模拟了系统由倍周期分岔导致混沌的过程,揭示了系统的复杂性. The dynamical behavior of the cubic-quintic complex Ginzburg-Landau equation (CGLE) has been investigated in this paper. Based on the assumption of a special trial function, a three-dimensional vector field has been derived from the infinite-dimensional dissipative system. The conditions of two types of possible bifurcation phenomena, i.e., simple bifurcation corresponding to change of the fixed points and Hopf bifurcation associated with limit cycles, have been presented, which may divide the parameter space into regions associated with different phase portraits. Two kinds of periodic solutions with different frequencies have been observed. Furthermore, a cascading of period-doubling bifurcations has been observed, which leads the system to chaos, implying the complexity of the vector field.
机构地区 江苏大学理学院
出处 《数学的实践与认识》 CSCD 北大核心 2010年第12期229-237,共9页 Mathematics in Practice and Theory
基金 国家自然科学基金(10972091) 江苏大学高级人才基金(09JDG011)
关键词 GINZBURG-LANDAU方程 示性函数 分岔 混沌 ginzburg-landau equation trial function bifurcation chaos
  • 相关文献

参考文献13

  • 1Bluman G, Cheviakov A F, Senthilvelan M. Solution and asymptotic/blow-up behaviour of a class of nonlinear dissipative systems[J]. Journal of Mathematical Analysis and Applications, 2008, 339: 1199-1209. 被引量:1
  • 2呼青英,张宏伟.一类具边界耗散的高阶非线性双曲方程整体解的不存在性[J].数学的实践与认识,2003,33(10):99-101. 被引量:1
  • 3Rivera J E, Racke R. Exponential stability for wave equations with non-dissipative damping[J]. Nonlinear Analysis: Theory, Methods & Applications 2008, 68: 2531-2551. 被引量:1
  • 4刘式达,刘式适,叶其孝.非线性演化方程的显式行波解[J].数学的实践与认识,1998,28(4):289-301. 被引量:22
  • 5Hecke M. Coherent and incoherent structures in systems described by the 1D CGLE: experiments and identification[J]. Physica D, 2003, 174: 134-151. 被引量:1
  • 6Brusch L, Torcini A, Hecke M etc. Modulated amplitude waves and defect formation in the one- dimensional complex Ginzburg-Landau equation[J]. Physica D, 2001, 160: 127-148. 被引量:1
  • 7Fujita A. Numerical study for vortex lattice transition with extended Ginzburg-Landau model[J]. Physica C, 1998, 309: 65-70. 被引量:1
  • 8Moon H. Subcritical modulational instability and transition to chaos from periodicity[J]. Physics Letters A, 2004, 325: 324-328. 被引量:1
  • 9Lan Y, Garnier N, Cvitanovic P. Stationary modulated-amplitude waves in the 1D complex Ginzburg Landau equation[J]. Physica D, 2004, 188: 193-212. 被引量:1
  • 10Maruno K, Ankiewic A, Akhmediev N. Exact localized and periodic solutions of the discrete complex Ginzburg-Landau equation[J]. Optics Communications, 2003, 221: 199-209. 被引量:1

二级参考文献10

  • 1Banks H T, Gilliam D S, Shubov V I. Global solvability for damped abstract nonlinear hyperbolic system[J]. Diff Integ Equa, 1997, 10:309--332. 被引量:1
  • 2Aassila M, Guesmia A. Energy decay for a damped nonlinear hyperbolic equation[J]. Appl Math Lett, 1999, 12,49--52. 被引量:1
  • 3Maksudov F G, Alley F A. On a problem for a nonlineir hyperbolic equation of higher order with dissipation on the boundary of the domain[J]. Sov Math Dokl, 1992, 44: 771--774. 被引量:1
  • 4Alley A B. A mixed problem with dissipation on the boundary for quasllinear hyperbolic equation of second order[J]. Sov Math Dokl, 1986, 33: 836--839. 被引量:1
  • 5Kalantarov V K, Ladyzhenskaya O A. The occurrence of collapse for quasilinear equations of parabolic and hyperbolic type[J]. J Sov Math, 1978, 10: 53--70. 被引量:1
  • 6刘式达,刘式适.大气中的非线性椭圆余弦波和孤立波[J]中国科学(B辑 化学 生物学 农学 医学 地学),1982(04). 被引量:1
  • 7尤广建.经典物理与现代物理[M]陕西人民教育出版社,1993. 被引量:1
  • 8刘式达,刘式适.孤立波和同宿轨道[J].力学与实践,1991,13(4):9-15. 被引量:16
  • 9刘式适,刘式达.KdV-Burgers方程和Fisher方程的异宿轨道[J].科学通报,1992,37(2):191-192. 被引量:3
  • 10熊树林.Burgers-KdV方程的一类解析解[J].科学通报,1989,34(1):26-29. 被引量:44

共引文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部