GLOBAL SOLUTIONS FOR SOME OLDROYD MODELS OF NON-NEWTONIAN FLOWS
被引量:14
GLOBAL SOLUTIONS FOR SOME OLDROYD MODELS OF NON-NEWTONIAN FLOWS
摘要
The authors consider here some Oldroyd models of non-Newtonian flows consisting of a strong coupling between incompressible Navier-Stokes equations and some transport equations. It is proved that there exist global weak solutions for general initial conditions. The existence proof relies upon showing the propagation in time of the compactness of solutions.
参考文献2
-
1R. J. DiPerna,P. L. Lions.Ordinary differential equations, transport theory and Sobolev spaces[J].Inventiones Mathematicae.1989(3) 被引量:1
-
2Daniel D. Joseph,Michael Renardy,Jean-Claude Saut.Hyperbolicity and change of type in the flow of viscoelastic fluids[J].Archive for Rational Mechanics and Analysis.1985(3) 被引量:1
同被引文献29
-
1HUANG XiangDi 1 & XIN ZhouPing 2, 1 Department of Mathematics, University of Science and Technology of China, Hefei 230026, China 2 Department of Mathematics, The Chinese University of Hong Kong, Hong Kong, China.A blow-up criterion for classical solutions to the compressible Navier-Stokes equations[J].Science China Mathematics,2010,53(3):671-686. 被引量:14
-
2HuiZhang Ping-wenZhang.A THEORETICAL AND NUMERICAL STUDY FOR THE ROD-LIKE MODEL OF A POLYMERIC FLUID[J].Journal of Computational Mathematics,2004,22(2):319-330. 被引量:1
-
3张建华.亚洲地区中东原油溢价问题探讨[J].国际石油经济,2005,13(1):45-47. 被引量:9
-
4Zhen LEI School of Mathematical Sciences, Fudan University, Shanghai 200433, China,School of Mathematics and Statistics, Northeast Normal University, Changchun 130024, China..Global Existence of Classical Solutions for Some Oldroyd-B Model via the Incompressible Limit[J].Chinese Annals of Mathematics,Series B,2006,27(5):565-580. 被引量:3
-
5S. Boyaval,C. Le?Bris,T. Lelièvre,Y. Maday,N. C. Nguyen,A. T. Patera.Reduced Basis Techniques for Stochastic Problems[J].Archives of Computational Methods in Engineering.2010(4) 被引量:1
-
6C. Le Bris,T. Lelièvre,Y. Maday.Results and Questions on a Nonlinear Approximation Approach for Solving High-dimensional Partial Differential Equations[J].Constructive Approximation.2009(3) 被引量:1
-
7P. Constantin,Nader Masmoudi.Global Well-Posedness for a Smoluchowski Equation Coupled with Navier-Stokes Equations in 2D[J].Communications in Mathematical Physics.2008(1) 被引量:1
-
8Fanghua Lin,Ping Zhang,Zhifei Zhang.On the Global Existence of Smooth Solution to the 2-D FENE Dumbbell Model[J].Communications in Mathematical Physics.2008(2) 被引量:1
-
9P. Constantin,C. Fefferman,E. S. Titi,A. Zarnescu.Regularity of Coupled Two-Dimensional Nonlinear Fokker-Planck and Navier-Stokes Systems[J].Communications in Mathematical Physics.2007(3) 被引量:1
-
10Andrea Bonito,Philippe Clément,Marco Picasso.Mathematical analysis of a simplified Hookean dumbbells model arising from viscoelastic flows[J].Journal of Evolution Equations.2006(3) 被引量:1
引证文献14
-
1LE BRIS Claude,LELIVRE Tony.Micro-macro models for viscoelastic fluids:modelling,mathematics and numerics[J].Science China Mathematics,2012,55(2):353-384.
-
2邱训源.巴黎和法兰西岛概况[J].国外城市规划,2004,19(5):38-43. 被引量:2
-
3TAI Ren-Zhong,NAMIKAWA Kazumichi.Plasma-based X-ray laser speckle and its application on ferroelectric material[J].Nuclear Science and Techniques,2005,16(4):193-200.
-
4付峰,张鹤丹,王惺,麻林巍,李政.中国城市能源安全指标体系研究[J].中国能源,2006,28(4):39-43. 被引量:12
-
5Zhen LEI School of Mathematical Sciences, Fudan University, Shanghai 200433, China,School of Mathematics and Statistics, Northeast Normal University, Changchun 130024, China..Global Existence of Classical Solutions for Some Oldroyd-B Model via the Incompressible Limit[J].Chinese Annals of Mathematics,Series B,2006,27(5):565-580. 被引量:3
-
6洪庆明.路易十四时代的文化控制策略[J].史林,2011(6):155-164. 被引量:11
-
7LE BRIS Claude,LELIVRE Tony.Micro-macro models for viscoelastic fluids: modelling, mathematics and numerics Dedicated to the NSFC-CNRS Chinese-French summer institute on fluid mechanics in 2010[J].Science China Mathematics,2012,55(1):353-384. 被引量:2
-
8Xianpeng Hu,Dehua Wang.FORMATION OF SINGULARITY FOR COMPRESSIBLE VISCOELASTICITY[J].Acta Mathematica Scientia,2012,32(1):109-128.
-
9Sheng Quan LIU,Jun Ning ZHAO.Blow-up Criterion for Three-dimensional Compressible Viscoelastic Fluids with Vacuum[J].Acta Mathematica Sinica,English Series,2013,29(6):1159-1174.
-
10徐世澄.福克斯上台后墨西哥政治经济模式的变化[J].拉丁美洲研究,2001(3):8-14. 被引量:2
二级引证文献32
-
1唐运冠.游戏与路易十四宫廷社会的构建[J].史学月刊,2023(7):74-83.
-
2陈霁.关于墨西哥政治现代化进程的思考[J].行政论坛,2002,9(2):78-80. 被引量:2
-
3田志勇,关忠良,王思强.能源消费结构分析的熵应用研究[J].中国能源,2008,30(10):14-17. 被引量:2
-
4李政,付峰,高丹.中国特大城市客运交通能源需求变化的因素分析[J].清华大学学报(自然科学版),2008,48(11):1945-1948. 被引量:15
-
5全伟.我国能源与城镇化关系研究综述[J].城市问题,2009(8):71-74. 被引量:5
-
6吴笛,毛建素.中国重点城市产业与能源消费基本特征研究[J].环境科学与技术,2010,33(2):184-191. 被引量:4
-
7王默玉,魏佳,申晓留.基于AHP的北京市能源安全研究与分析[J].应用能源技术,2010(9):7-11. 被引量:4
-
8杨鑫,张琦.巴黎地区风景园林规划发展的历程与启示(1)[J].中国园林,2010,26(9):96-100. 被引量:2
-
9孙天晴,郑一,王昊,吴晓磊.中国城市能源系统可持续性评价体系实证研究[J].中国人口·资源与环境,2010,20(11):1-6. 被引量:9
-
10WANG KE-YAN.Weak Dissipative Structure for Compressible Navier-Stokes Equations[J].Communications in Mathematical Research,2010,26(4):375-384.
-
1阎小丽,邓慧琳.不可压纳维-斯托克斯方程的解析解(英文)[J].吉林师范大学学报(自然科学版),2010,31(1):71-75. 被引量:1
-
2GAO Wei LIU Ru-xun DUAN Ya-li.NUMERICAL INVESTIGATION ON NON-NEWTONIAN FLOWS THROUGH DOUBLE CONSTRICTIONS BY AN UNSTRUCTURED FINITE VOLUME METHOD[J].Journal of Hydrodynamics,2009,21(5):622-632. 被引量:1
-
3YIN Gu-liang.A Remark on the Time Decay of Non-Newtonian Flows in R3[J].Chinese Quarterly Journal of Mathematics,2009,24(1):69-74.
-
4朱维婷,任清褒,段立伟,陈庆虎.Entanglement Dynamics of Two Qubits Coupled Independently to Cavities in the Ultrastrong Coupling Regime:Analytical Results[J].Chinese Physics Letters,2016,33(5):5-8.
-
5Weihua Luo,Tingzhu Huang.A Parameterized Preconditioner for Incompressible Navier-Stokes Equations[J].数学计算(中英文版),2013,2(4):105-108.
-
6邓慧琳,张红艳,郭爱丽.广义纳维-斯托克斯方程解的衰减性[J].贵州工程应用技术学院学报,2015,33(2):148-154. 被引量:1
-
7ZHANGPING,QiuQINGJIU.REMARKS ON THE EXISTENCE OF WEAK SOLUTIONS TO 2-D INCOMPRESSIBLE NAVIER-STOKES EQUATIONS[J].Chinese Annals of Mathematics,Series B,1998,19(4):529-536.
-
8Wei Mingjun Zhu Wanzhen.GLOBAL WEAK SOLUTIONS OF THE RELATIVISTIC VLASOV-KLEIN-GORDON SYSTEM IN TWO DIMENSIONS[J].Annals of Differential Equations,2007,23(4):511-518.
-
9Bo-Qing Dong.Time Decay Rates of the Isotropic Non-Newtonian Flows in R^n[J].Acta Mathematicae Applicatae Sinica,2007,23(1):99-106.
-
10Mohamed Ahmed Abdallah,Xu-yang SUN,Wei-wei WANG,Jun-ping YIN.Remarks on Classical Solutions to Steady Quantum Navier-Stokes Equations[J].Acta Mathematicae Applicatae Sinica,2016,32(4):957-962.