摘要
建立一个钢管订购和运输模型,从钢厂到主管道结点的运费是影响总费用的重要因素.为使总费用最小,须使从钢厂到主管道结点的运费──钢管运输费最小.对求网络中最短路径的Dijkstra算法进行改进,得到新的算法,可对含多种权重计算方式的网络进行搜索,得出最小费用路径(最短路径).在此基础上,建立起描述总费用的函数,把钢管的订购和运输问题归结为在一定约束条件下求最小总费用的二次规划问题.用Matlab软件中的QP()函数求得问题的最优解. 对于问题(1),最小总费用为129.17亿元;对于问题(2),钢厂S1的产量上限的变化和钢厂S5的钢管销价的变化对订购和运输计划及其总费用的影响最大;对于问题(3),最小总费用为141.83亿元.
In the paper, a model for the order and transportation of steel tubes is given. The cost of tranportation is an important factor in the total cost. A new algorithm is given for shortest path based on the Dijkstra algorithm in the graph which has different weight. So the problem is deduced to aproblem of quadratic planning and is solved with the Function QP() in the software Matlab.
出处
《大连大学学报》
2001年第2期19-25,共7页
Journal of Dalian University