期刊文献+

仿昆虫扑翼微飞行器研究现状与关键技术 被引量:12

Current Status and Key Techniques of Insect-Inspired Flapping-Wing Micro Air Vehicles
下载PDF
导出
摘要 仿昆虫扑翼微飞行器基于对自然界中各类昆虫扑翼飞行机理的仿生,具有尺寸微小、隐蔽性高、灵活机动等优势。依据仿昆虫扑翼微飞行器所普遍采用的静电驱动、压电驱动、电机驱动、电磁驱动和其他驱动等扑翼驱动方式,依次分类介绍并总结目前仿昆虫扑翼微飞行器的发展历程、国内外研究现状和最新进展。同时针对目前仿昆虫扑翼微飞行器所采用的各类驱动方式、飞行方式、控制方案、胸腔机构设计、整机系统共振机制以及机载设备搭载研究等关键技术进行了分析和总结。 The insect-inspired flapping-wing micro air vehicle is based on the bionics of the flapping-wing flight mechanism of various insects in nature. With advantages of small size,high concealment, flexibility and maneuverability,it can be similar to insect flying at ultra-low altitude. Meanwhile,it can perform specific tasks efficiently in complex terrain and narrow space by carrying mission loads. Hence,it has immeasurable application potential in military and civilian fields, such as military reconnaissance,dangerous environment detection,disaster search and rescue,electronic jamming and anti-terrorism surveillance. In this paper,the research history and the latest progress of insect-like flapping-wing micro air vehicle at home and abroad are introduced. The key technologies of driving mode,flight mode,control scheme and airborne equipment of insect-like flapping-wing micro air vehicle are analyzed and summarized.
作者 王晨阳 张卫平 邹阳 WANG Chenyang;ZHANG Weiping;ZOU Yang(National Key Laboratory of Science and Technology on Micro/Nano Fabrication,Key Laboratory for Thin Film and Micro Fabrication of the Ministry of Education,Shanghai Key Laboratory of Navigation and Location-Based Services,Department of Micro-Nano Electronics,School of Electronic Information and Electrical Engineering,Shanghai Jiao Tong University,Shanghai 200240,China)
出处 《无人系统技术》 2018年第4期1-16,共16页 Unmanned Systems Technology
基金 预研项目(LZY2017206 LZY2016215 301020803 1620010701) 教育部新世纪优秀人才支持计划(NCET-10-0583) 教育部支撑项目(6141A02022607) 上海专业技术服务平台项目(16DZ2290103)
关键词 仿生 昆虫 扑翼飞行 微型飞行器 微加工技术 Bionics Insect Flapping-Wing Micro Air Vehicle(MAV) Microfabrication Technology
  • 相关文献

参考文献3

二级参考文献15

  • 1王姝歆,陈国平,周建华,颜景平.复合型柔性铰链机构特性及其应用研究[J].光学精密工程,2005,13(z1):91-97. 被引量:16
  • 2Wood R J. The First Takeoff of a Biologically in spired at-scale robotic insect[J]. IEEE Transactions on Robotics, 2008, 24(2):341- 347. 被引量:1
  • 3Hines L, Arabagi V, Sitti M. Free flight simulations and pitch and roll control experiments of a sub-gram flapping-flight micro aerial vehicle[C]// IEEE Inter- national Conference on Robotics and Automation, Shanghai, China: IEEE Press, 2011. 被引量:1
  • 4Tan X B, Zhang W P, Ke X J, etal. Development of flapping-wing micro air vehicle in asia[C]// World Congress on Intelligent Control and Automation (WCI- CA). Beijing, China: IEEE Press, 2012. 被引量:1
  • 5Wood R J, Avadhanula S, Menon M, et al. Mieroro- hot design using fiber reinforced composites[C] // IEEE International on Robotics and Automation. Tai-pei, Taiwan: IEEE Press, 2003. 被引量:1
  • 6(;hi PC, ZhangWP, ChenWY, etal. Design, fab rication and analysis of macrorobotic inset wings and throax with different materials by MEMS technology [J 1. Advanced Materials Research, 2011, 291-294:3135 3138. 被引量:1
  • 7Meng K, Zhang W P, Chen W Y, et al. The design and micromachining of an electromagnetic MEMS flapping-wing micro air vehicle [J]. Microsystem Technologies, 2012(18) : 127- 136. 被引量:1
  • 8Hines L, Arabagi V, Sitti M. Shape memory poly mer based flexure stiffness control in a miniature flap ping wing robot [J]. IEEE Transactions on Robotics and Automation, 2012, 28(4): 987-990. 被引量:1
  • 9Nicolae L. Compliant mechanisms design of flexure hinges[M]. Boca Raton, US.. CRC Press INC, 2003. 被引量:1
  • 10Sitti M. Piezoelectrically actuated four-bar mechanism with two flexible links for micromechanical flying in- sect thorax[J]. IEEE Transactions on Mechatronics, 2003, 8(1):26 -36. 被引量:1

共引文献12

同被引文献71

引证文献12

二级引证文献67

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部