摘要
提出并设计了一套应用于小尺寸、高频抖动的微型仿生扑翼飞行器的实时视觉系统,包括构成硬件基础的微型摄像头模块、5.8GHz传输模块和无线图传接收模块,以及构成软件模块的两种算法,其中一种是利用角点检测与LK光流法、基于卡尔曼低通混合滤波的实时电子稳像去抖算法,另一种是基于YOLOv3的人像识别算法。进行了微型仿生扑翼飞行器的飞行硬件搭载测试实验,实验结果表明,所提出的电子稳像算法可以去除x轴66.56%、y轴73.15%的抖动,人像识别算法可以达到96%以上的准确率,同时图传分辨率在720×480像素时,稳像去抖算法时延为6.33ms,人像识别算法时延为20.5ms,总时延满足实时要求,完成了实时去抖与人像识别系统的设计目标。
A real-time vision systemis designed for flapping-wing micro air vehicles(FMAV)withlightweight and high-frequency vibration.The system includes the hardware and software modules.The hardware is consists of a micro camera module,a 5.8 GHz transmission module and a wireless image transmission receiving module.And the software modules include two algorithms,one is a real-time video stabilization algorithm based on corner detection,Lucas Kanade optical flow and Kalman low-pass hybrid filtering,and the other one is a person recognition algorithm based on YOLOv3.Flight tests on FMAV with hardware were carried out.The experimental results indicate the video stabilization algorithm can diminish 66.56% vibration of the x-axis and 73.15%vibration of the y-axis.The person recognition algorithm can achieve an accuracy of higher than 96%.The video stabilization algorithm costs 6.33 ms and person recognition algorithm costs 20.5 ms when the image resolution is 720×480 pixels,thusthe total delay meets the real-time requirements.In conclusion,the design goal of real-time vision system has been achieved.
作者
王昕鹏
张卫平
牟家旺
陈子豪
WANG Xinpeng;ZHANG Weiping;MOU Jiawang;CHEN Zihao(National Key Lab.of Science and Technol.on Micro/Nano Fabrication;Dept,of Micro/Nano Electronics,Shanghai Jiaotong University,Shanghai 200240,CHN)
出处
《半导体光电》
CAS
北大核心
2020年第1期114-117,122,共5页
Semiconductor Optoelectronics
基金
教育部基金项目(6141A02022607,6141A02022627)
预研基金项目(1816311ZT005020,301020803,17070107)
上海市科委项目(19511104202,19DZ2291103).