期刊文献+

用动理学方法推导空化流的控制方程 被引量:3

Kinetic theory governing equations for cavity flow
原文传递
导出
摘要 为了更合理地描述两相空化流,推导出物理意义清晰的控制方程是非常必要的。采用微观动理学方法,对描述空化流相空间中分子或颗粒速度分布函数守恒规律的Boltzmann方程分别取零次矩和一次矩,分别得到两相空化流的连续方程和动量方程。其中,用动理学方法可直接推导出泡径变化引起的质量、动量传递,并推导出相间碰撞积分项。对推导所得控制方程的分析表明,微观动理学方法能够描述相颗粒间的相互作用及相颗粒运动的微观特性,从而能够更好地模拟和认识空化流。 Governing equations with distinct physical meaning are necessary for describing twophase cavity flow more reasonablely. The governing equations for twophase cavity flow were derived using microscale kinetic theory with the continuity and momentum equations for the twophase cavity flow obtained by multiplying the Boltzmann equation by its characteristic parameters and integrating over the velocity space. The mass and momentum transport caused by the various bubble sizes, and the collision integral term were calculated using the kinetic method. Compared with the governing equations from continuum theory, the kinetic model can describe the interactions and microscale characteristics of the particles to provide more accurate analysis of two phase cavity flow.
出处 《清华大学学报(自然科学版)》 EI CAS CSCD 北大核心 2003年第10期1416-1419,共4页 Journal of Tsinghua University(Science and Technology)
关键词 动理学方法 两相空化流 控制方程 速度分布函数 BOLTZMANN方程 水力学 kinetic theory cavity flow velocity distribution function Boltzmann equation
  • 相关文献

参考文献2

共引文献11

同被引文献49

引证文献3

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部