期刊文献+

Study on the Effect of Mutated Bacillus megaterium in Two-Stage Fermentation of Vitamin C 被引量:5

Study on the Effect of Mutated Bacillus megaterium in Two-Stage Fermentation of Vitamin C
下载PDF
导出
摘要 Bacillus megaterium as a companion strain in two-stage fermentation of vitamin C could secrete some active substances to spur growth of Gluconobacter oxydans to produce 2-KLG. In the fermenting system where Gluconobacter oxydans was combined with GB82-a mutated strain of B. megaterium by ion implantation, the amount of 2-KLG harvested was larger than that produced by the original B. megaterium BP52 being substituted for GB82. In this paper, we studied the effect of the active substances secreted by GB82 to enhance the capability of Gluconobacter oxydans to produce 2-KLG. The supernate of GB82 sampled at different cultivation times all had much more activity to spur Gluconobacter oxydans to yield 2-KLG than that of the original B. megaterium, which might be due to the genetic changes in the active components caused by ion implantation. Furthermore, the active substances of GB82's supernate would lose a part of its activity in extreme environments, which is typical of some proteins. Bacillus megaterium as a companion strain in two-stage fermentation of vitamin C could secrete some active substances to spur growth of Gluconobacter oxydans to produce 2-KLG. In the fermenting system where Gluconobacter oxydans was combined with GB82-a mutated strain of B. megaterium by ion implantation, the amount of 2-KLG harvested was larger than that produced by the original B. megaterium BP52 being substituted for GB82. In this paper, we studied the effect of the active substances secreted by GB82 to enhance the capability of Gluconobacter oxydans to produce 2-KLG. The supernate of GB82 sampled at different cultivation times all had much more activity to spur Gluconobacter oxydans to yield 2-KLG than that of the original B. megaterium, which might be due to the genetic changes in the active components caused by ion implantation. Furthermore, the active substances of GB82's supernate would lose a part of its activity in extreme environments, which is typical of some proteins.
出处 《Plasma Science and Technology》 SCIE EI CAS CSCD 2003年第5期2011-2016,共6页 等离子体科学和技术(英文版)
关键词 bacillus megaterium gluconobacter oxydans two-stage fermentation of Vita- mine 2-kelo-L-gulonic acid bacillus megaterium, gluconobacter oxydans, two-stage fermentation of Vita- mine, 2-kelo-L-gulonic acid
  • 相关文献

参考文献3

二级参考文献2

共引文献103

同被引文献44

引证文献5

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部