期刊文献+

图的色多项式系数之和问题的研究 被引量:4

Research on the Sum of Chromatic Coefficients
下载PDF
导出
摘要 本文给出了任何简单图G(V, E)的色多项式 系数之和的 公式 并进行了证明,从而为判别一个多项式不是图的色多项式提供了一个必要条件.同时也分别给出了树、2-树、圈、轮图和完全图的色多项式系数绝对值之和的表达式。最后证明了任何简单连通图的色多项式系数绝对值之和 与边数 成正比。 In this paper, it is proved that the sum of chromatic coefficients of any simple graphs must be The expressions of the absolute sum of chromatic coefficients of some families of graphs, such as trees, 2-trees, cycles, wheels and complete graphs, are given. Finally, it is proved that the absolute sum of chromatic coefficients of any simple connected graphs varies directly as εand must satisfy
作者 刘念祖
出处 《运筹学学报》 CSCD 北大核心 2003年第3期67-74,共8页 Operations Research Transactions
关键词 简单图 色多项式 系数 完全图 连通图 OR , graph, chromatic polynomial, chromatic coefficient
  • 相关文献

参考文献6

  • 1Birkhoff G D. A Determinant Formula for the Number of Ways of Coloring a Map Ann of Math, 1912, 14:42-46. 被引量:1
  • 2Read R C. An Introduction to Chromatic Polynomials. J Combin. Theory, 1968, 4:52-71. 被引量:1
  • 3Bondy J A, Murty U S R. Graph Theory with Applications. THE MACMILLAN PRESS LTD, 1976. 被引量:1
  • 4Biggs N. Algebraic Graph Theory. Cambridge University Press, Cambridge, 1974. 被引量:1
  • 5Lovasz L. Combinatorial Problems and Exercises. North-Holland Publishing Compary, 1979. 被引量:1
  • 6Chao C Y, Li N Z, Xu S J. On q-trees. J Graph Theory, 1986, 10:129-136. 被引量:1

同被引文献16

  • 1刘耀,赵敦.色多项式系数的几个结果[J].兰州大学学报(自然科学版),1993,29(3):49-53. 被引量:4
  • 2李慰萱 田丰.关于图的色多项式的若干问题.数学学报,1978,21(3):223-230. 被引量:3
  • 3BIRKHOFF G D. A determinant formula for the number of ways of coloring a map[J]. Ann. of Math., 1912, (14) : 42-46. 被引量:1
  • 4READ R C. An Introduction to Chromatic Polynomials[J] J. Combin. Theory, 1968(4): 52-71. 被引量:1
  • 5BONDY J A, MURTY U S R. Graph Theory with Applications[M]. New York : THE MACMILLAN PRESS LTD., 1976. 被引量:1
  • 6NORMAN B. Algebraic Graph Theory [ M ].London: Cambridge University Press? 1994: 29-98. 被引量:1
  • 7DONG F M,KOH K M, TEO K L. ChromaticPolynomials and Chromatic it y of Graphs [ M ].Singapore: World Scientific, 2005. 被引量:1
  • 8READ R C, TUTTE W T. Chromatic polynomials[M]// BEINEKE L W,WILSON R J. Topics inGraph Theory m. New York: Academic Press,1988: 15-42. 被引量:1
  • 9MEREDITH G. Coefficients of chromaticpolynomials[J]. J Comb Theory (Ser B),1972, 13:14-17. 被引量:1
  • 10DONG F M, KOH K M, SOH C A. Divisibility ofcertain coefficients of the chromatic polynomials[J],Discrete Math, 2004,275: 311-317. 被引量:1

引证文献4

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部